

PT DANMAR EXPLORINDO

Jalan Padang Sulasi No. 8 Padangsambian, Bali, Indonesia Mobile: +62 81 2385 1151 Email: daniel.madre@danmar.asia www.danmarexploration.com

PT ERABARU TIMUR LESTARI NICKEL RESOURCE ESTIMATE

Qualified Persons Report using JORC Code, 2012

MARCH 2024

EXECUTIVE SUMMARY

PT Erabaru Timur Lestari (ETL) nickel laterite project is located near the village of Batupali, within the Regency of Morowali, in the Province of Central Sulawesi, Indonesia.

PT Danmar Explorindo has estimated Nickel Resources using the JORC Code with a data cutoff at the 18th December 2023. This is the first formal Nickel Resource estimate for ETL.

The ETL nickel mining license is valid until June 2031 and covers 1,159ha.

Since January 2023, Ultra Ground Penetrating Radar (GPR) surveys have covered 839.8ha of the ETL license area and the results suggest more than 130,000,000 BCM of laterite in the area.

Validated drill data, used in this Resource estimate totals, 1,337 holes with a cumulative total depth of 32,798m and 32,933 XRF analyses performed on drill core samples to document the grade characteristics in the main ETL target area.

ETL Project Mineral Resource Statement Cut off grade > 0.8% Ni									
Lithology	Mineral Resource Mass (Dry Category Million ton)		Ni	Co	Fe	MgO	SiO2	Cr2O3	METAL CONTENT EQUIVALENT (Ni)
	Galegory	willion tony	%	%	%	%	%	%	
	Indicated	47	1.1	0.11	41.0	1.9	6.6	2.9	510,000
LIMONITE	Inferred	4	1.1	0.11	40.9	2.0	7.5	2.9	45,000
	Sub-Total	51	1.1	0.11	41.0	1.9	6.7	2.9	555,000
	Indicated	8	1.4	0.04	17.4	12.8	35.2	1.4	110,000
SAPROLITE	Inferred	2	1.1	0.04	17.0	13.2	36.7	1.3	20,000
	Sub-Total	10	1.3	0.04	17.3	12.9	35.5	1.4	130,000
	Indicated	55	1.1	0.10	37.9	3.3	10.3	2.7	620,000
Total ETL Project	Inferred	6	1.1	0.09	33.4	5.5	16.7	2.4	65,000
	Project Total	61	1.1	0.10	37.4	3.5	11.0	2.7	685,000

The estimated Nickel Resource, covering 340ha, at this time, is as follows:

Exploration Targets, covering 50ha, still remain unexplored where an additional 1-8million wet tons of nickel laterite are possible. Although it should be noted that there is insufficient data at this time to estimate a Nickel Resource and there is no guarantee further exploration will result in a Nickel Resource.

TABLE OF CONTENTS

Executiv	e Summary	i
Table of	f Contents	ii
List of T	ables	v
List of F	igures	vi
List of P	hotos	viii
List of A	bbreviations	ix
List of A	ppendix	xi
Compet	ent Person's Statement And Declaration	xii
1. Intr	roduction	1
1.1.	Background	1
1.2.	Location and Access	1
1.3.	Mining Lease Details	1
1.4.	Forestry and Land Use	3
2 Geo	ology	5
2.1.	Regional Geology	5
2.2.	Local Geology	9
2.3.	Mineralisation	14
2.4.	Previous Exploration, Resource Studies and Reports	15
3. Cui	rrent Exploration Program Method	
3.1.	Ultra Ground Penetrating Radar Survey	
3.2.	Drilling	
3.2	1. Core Recoveries	19
3.2	2. LiDAR and Drill Collar Survey	

	3.2.	3.	Geological Logging of Cores	. 19
	3.2.4	4.	Core Photography	. 21
	3.2.	5.	Drill Hole Sample Handling	. 22
	3.3.	Lab	oratory Sample and Analysis Procedures	. 23
	3.3.	1.	Field Sample Preparation	. 23
	3.3.	2.	Sample Security, Audits and Review	. 23
	3.3.	3.	Laboratory QA/QC Protocol	. 24
4.	Res	ults.		. 25
	4.1.	GPF	R Survey	. 25
	4.2.	Dril	l Results	. 29
	4.3.	Sur	vey Results	. 31
	4.4.	Ass	ay Analysis Results	. 32
	4.5.	Insi	tu Density and Moisture Measurements	. 32
	4.6.	Ass	ay Sample Quality Assurance and Control Results	. 33
	4.6.	1.	Coarse Blanks and Standard	. 34
	4.6.	2.	Coarse Duplicates	. 34
	4.6.	3.	Pulverizer Duplicates	. 36
	4.6.4	4.	Certified Reference Materials	. 37
	4.6.	5.	Replicate Samples	. 40
	4.6.	6.	Interlaboratory Check Samples	. 42
	4.6.	7.	Control Sample Insertion Rates	. 46
5.	Dat	a Ve	rification	. 47
	5.1.	Dril	I Hole Collar Elevation and LiDAR Topography	. 47
	5.2.	Dat	abase Validation	. 48
	5.3.	Geo	ological Domains	. 48

6	5. Mir	neral Resource Estimate	51
	6.1.	Software	51
	6.2.	Geological Modeling	51
	6.3.	Extrapolatory Data Analysis	53
	6.4.	Variography	55
	6.4.	1. Variogram	55
	6.4.	2. Kriging Neighbourhood Analysis (KNA)	55
	6.5.	Block Model	57
	6.6.	Insitu Density and Moisture Content	58
	6.7.	Grade Estimation	58
	6.8.	Block Model Validation	60
	6.9.	Resource Classification	62
	6.10.	Prospect for Economic Extraction	64
	6.11.	Statement of Mineral Resources	65
	6.12.	Risk and Opportunities	66
7	7. Exp	loration Target	67
F	Referen	ces	68
/	Append	ix	69

LIST OF TABLES

Table 1 Generalized chronostratigraphy of the project area	8
Table 2 UltraGPR survey summary	25
Table 3 UltraGPR survey laterite volume interpretation	25
Table 4 Drill data statistics	29
Table 5 Drilling distribution per Block	29
Table 6 Core recoveries	
Table 7 Drill collar ground survey	32
Table 8 Density measurement from core samples	
Table 9 Moisture measurement from core sample by Hengjaya laboratory	33
Table 10 Sample assay summary	
Table 11 Certified Nickel values of OREAS CRMs	37
Table 12 Sample Insertion Rates June 2023 – January 2024	46
Table 13 Generalized geological domain based on chemistry data	49
Table 14 Drillhole and geological model cumulative thickness comparison	51
Table 15 Composite statistics for Limonite (LIM)	53
Table 16 Composite statistics for Saprolite (SAP)	53
Table 17 KNA Summary	57
Table 18 Block model dimensions	57
Table 19 Block model attributes for all blocks	58
Table 20 Insitu Density and Moisture Content applied in this Resource estimate	58
Table 21 Example of grade estimation nickel for limonite and saprolite	59
Table 22 Kriging properties to assess the Resource classification in ETL Project	62
Table 23 Nickel Laterite Resource	65
Table 24 ETL Exploration Target	67

LIST OF FIGURES

Figure 1 Project location map in Indonesia	2
Figure 2 Project access from Kendari City	2
Figure 3 PT Erabaru Timur Lestari concession map	3
Figure 4 Forestry map of the ETL project area	4
Figure 5 Satellite map displaying forest and land condition of the ETL project area	4
Figure 6 Major geological unit and faults of Sulawesi (Modified after White er al., 2014)	6
Figure 7 Published regional geology of the project area	7
Figure 8 Conceptual geology of the project area	9
Figure 9 Local geology map	13
Figure 10 Correlation between Fe and Cr_2O_3 from all samples	14
Figure 11 Diagrammatic representation of a typical laterite profile in Sulawesi	17
Figure 12 Example UltraGPR survey of a typical laterite profile in Sulawesi	18
Figure 13 UltraGPR survey lines on topographic map	26
Figure 14 UltraGPR section line interpretation example ETL Block D	26
Figure 15 Limonite thickness interpreted from the UltraGPR survey	27
Figure 16 Saprolite thickness interpreted from the UltraGPR survey	28
Figure 17 Depth to bedrock interpreted from UltraGPR survey	28
Figure 18 Drill hole location map	30
Figure 19 Topography map of the IUP area	31
Figure 20 Sample interval per lithology	32
Figure 21 Scatterplot results of 639 double roll crush duplicate vs original assays	35
Figure 22 Scatterplot results of 637 plots for pulp duplicate vs original assays	36
Figure 23 CRM OREAS182 - 737 samples analysis	38
Figure 24 CRM OREAS187 - 797 samples analysis	39
Figure 25 CRM OREAS192 - 958 samples analysis	40
Figure 26 Scatterplot results of 1,270 plots for replicate vs original assays	41
Figure 27 Scatterplot of HM original vs Tribhakti Inspektama duplicate assays	43
Figure 28 Scatterplot results of 1,030 plots of HM original vs Geoservices duplicate assays	. 45

Figure 29 Simplified data verification workflow	47
Figure 30 Discrepancy between collar elevation and LiDAR Topography	48
Figure 31 Average lithological thickness chart Block D	50
Figure 32 Geological model of ETL Block D	52
Figure 33 Histogram for Ni Limonite in Block D	54
Figure 34 Histogram for Ni Saprolite in Block D	54
Figure 35 Example of variogram of Ni Saprolite in Block D	55
Figure 36 KNA for optimum block model size in Block D	56
Figure 37 KNA for optimum discretization block for saprolite in Block D	56
Figure 38 Example of variable orientation (Leapfrog) applied in limonite	60
Figure 39 Example of block model validation for limonite using visual method	60
Figure 40 Block model validation using swath plot	61
Figure 41 Resource classification map	63
Figure 42 Grade tonnage of Limonite	64
Figure 43 Grade tonnage of Saprolite	65
Figure 44 Exploration target location	67

LIST OF PHOTOS

Photo 1 Molasse conglomerate outcrop at ETL	10
Photo 2 Garnierite mineral filled the conglomerate matrix	11
Photo 3 Example survey acquisition using UltraGPR (source: Groundradar.com)	16
Photo 4 Dexdrill 200 operating at ETL	18
Photo 5 Drill collar survey at ETL	20
Photo 6 Logging cores at wellsite at ETL	20
Photo 7 Core photo example from ETL	21
Photo 8 Sample packing at the well site	22
Photo 9 Core sample processing at ETL camp	23

LIST OF ABBREVIATIONS

Al₂O₃ APL CAD CaO	Auminum oxide Areal penggunaan lain (Forestry status for land with no Forestry restriction) Computer-Aided Design Calcium Oxide
Cm	Centimeter
Co CoG	Cobalt Cut off Grade
C0G Cr₂O₃	Chromium Oxide
CRM	Certified reference material
CV	Coefficient of Variation
DA	Pulp duplicate sample
DEX	PT Danmar Explorindo
DMT	Dolomite
DR	Coarse reject duplicate sample
EOH	End of hole
ETL	PT Erabaru Timur Lestari
Fe	Iron
FLS	Flysch
g	Gram
GPR	Ground Penetrating Radar
GPS	Global Positioning System
Ha	Hectare
HM	PT Hengjaya Mineralindo
HPAL	High Pressure Acid Leach
IMIP	Indonesia Morowali Industrial Park
IUP	Izin Usaha Pertambangan
JORC	Joint Ore Reserve Committee
km	Kilometer
KNA	Kriging Neigborhood Analysis
Lidar	Laser imaging Detection And Ranging
LIM	Limonite
m	Meters
MgO	Magnesium oxide
MLS	Molasse Congolomerate
MnO	Manganese Oxide Million metric tons
Mt MUD	Mullion metric tons Mud
Ni	Nickel
OK	Ordinary Kriging
OREAS	Ore Research and Exploration Australia Limited
QA/QC	quality assurance/ quality control
R^2	Coefficient of correlation
RKEF	Rotary Kiln Electric Furnace
	,

REP	Replicate sample
RTK	Real-Time Kinematic GPS
SAP	Saprolite
Sg	Specific Gravity
SiO ₂	quartz/silica
t	metric tons
VO	Variable Orientation
XRF	X-ray refraction
μm	Micrometer

LIST OF APPENDIX

- 1. TABLE 1 OF THE JORC CODE
- 2. PT ERABARU TIMUR LESTARI LEGAL DOCUMENTATION
- 3. PT HENGJAYA MINERALINDO LABORATORY QAQC REPORT
- 4. ETL BLOCKMODEL DOCUMENTATION
- 5. RESUME OF COMPETENT PERSONS AND CONTRIBUTING AUTHORS
 - i. DANIEL MADRE
 - ii. TOBIAS MAYA
 - iii. YORRIS WIBRIANA
 - iv. HARMAN ADDITYO

COMPETENT PERSON'S STATEMENT AND DECLARATION

Position	Name Qualifications		Signature	Date
Competent Person / Author	Daniel Madre	MSc MAusIMM, MAIG, IAGI	& John	19 Aug 24
Contributing Author / Peer Review	Tobias Maya	BSc MAusIMM	Æ	19 Aug 24
Resource Geologist	Yorris Wibriana	BSc, IAGI	mul	19 Aug 24
Resource Geologist	Harman Adhittyo	BSc, IAGI	Airt	19 Aug 24

AUTHOR AND CONTRIBUTOR

REPORT OBJECTIVES

This report was prepared for PT Erabaru Timur Lestari (ETL) for the purpose of a Nickel Resource estimate at the ETL project area Morowali, Central Sulawesi Province, Indonesia. The report utilizes exploration data until 18 December, 2023.

REPORTING STANDARD

This report is intended to comply with the 2012 Code, of the Joint Ore Reserve Committee (JORC) of Australia for the reporting of Mineral Resources and Reserves (http://www.jorc.org/docs/jorc code2012.pdf). All the information used in this report was assessed for compliance with the JORC Code and only information that was considered compliant was included in the estimate of a Nickel Resource as specified in the JORC Code of 2012. The competent persons, contributing to this report, have memberships to the Australasian Institute of Mining and Metallurgy that are current and in good standing.

AUTHORS QUALIFICATION STATEMENTS

The information in this report that relates to Exploration Results and Mineral Resources based on information compiled by Daniel Madre, Australasian Institute of Mining and Metallurgy member no: 100878, and Tobias Maya, member no: 304661.

Daniel Madre has a Master of Science degree majoring in geology and more than 40 years of experience as an exploration geologist of which more than 35 years has been working in Indonesia. Since 2003, Daniel Madre has been involved in numerous laterite nickel exploration and mining projects in Indonesia and has held several senior roles in laterite nickel projects including, Managing Director of PT Telen Paser Prima, which opened the first laterite nickel mine in Kalimantan in 2005 and President Director of PT Itamatra Nusantara, that discovered laterite nickel in Morowali Regency in Central Sulawesi. Daniel Madre is currently managing director of PT Danmar Explorindo and a consultant to PT Erabaru Timur Lestari for the purpose of this study. PT Danmar Explorindo has also been the exploration contractor to PT Erabaru Timur Lestari since June 2023, providing exploration management services including geology, drilling, well site geology and core sample preparation.

Tobias Maya has a Bachelor of Science degree majoring in Spatial Science from Charles Sturt University, Australia. Tobias Maya is a Mineral Resource modeling specialist with more than 18 years of experience in exploration and modeling lateritic nickel resources in Indonesia. Tobias Maya is currently a director of PT Geo Search. PT Geo Search has also provided UltraGPR (Ground Penetrating Radar) survey services to PT Erabaru Timur Lestari.

Daniel Madre and Tobias Maya have sufficient experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity that they are undertaking, Reporting of Exploration Results and Mineral Resources. Daniel Madre and Tobias Maya consent to the inclusion in the report of the matters based on this information in the form and context in which it appears. Resumes for Daniel Madre and Tobias Maya are attached in Appendix 5.

Daniel Madre, Tobias Maya and PT Danmar Explorindo partners, directors, substantial shareholders and their associates are independent of PT Erabaru Timur Lestari, its directors and substantial shareholders, its advisers and their associates.

Neither Daniel Madre and Tobias Maya or PT Danmar Explorindo nor any of its partners, directors, substantial shareholders, advisor's and their associates have any interest, direct or indirect in PT Erabaru Timur Lestari (ETL), its subsidiaries, associated companies, or any related entities in Indonesia or elsewhere in the world.

Daniel Madre, Tobias Maya and PT Danmar Explorindo have no conflicts of interest that might affect their objectivity in writing this report. PT Danmar Explorindo's fee for completing this report is based on normal commercial terms and the payment is not contingent upon the outcome and findings of this report.

DISCLAIMER

PT Danmar Explorindo has used the results of exploration programs provided by PT Erabaru Timur Lestari as well as the results of exploration drilling done on their behalf for the purpose of writing this report. In making this Mineral Resource estimation PT Danmar Explorindo has assumed as follows:

- 1) all the relevant data available was provided without prejudice
- 2) key assumptions are accepted as described in this report

In view of the above assumptions PT Danmar Explorindo has made reasonable enquiries and exercised their judgment on the reasonable use and validity of the data and found no reason to doubt its accuracy and reliability. For this reason, we believe that this report is an objective, accurate and reliable representation of the laterite nickel project at ETL nickel IUP, based on the exploration results until 18th December 2023. PT Danmar Explorindo makes no warranty to PT Erabaru Timur Lestari or any third parties with regard to any commercial investment on the basis of this report. The use of this report by PT Erabaru Timur Lestari or any other parties shall be at their own risk. The report must always be read in its entirety so that all the data and assumptions are fully considered and properly understood.

1. INTRODUCTION

1.1. Background

PT Danmar Explorindo (DEX) has been asked to provide an estimate of the Nickel Resources at the PT Erabaru Timur Lestari (ETL) laterite nickel project. Since January 2023, UltraGPR surveys have been completed in the ETL project area and drilling has started on the UltraGPR targets. The objective is to delineate sufficient Resources of nickel laterite to support the mining operation into the future. A haul road design, to link the ETL mine to the IMIP smelter facility, is well advanced. This will allow saprolite and limonite to be trucked directly to IMIP nickel smelter complex. This greatly enhances the potential for eventual economic extraction of the ETL nickel laterite deposit.

1.2. Location and Access

The ETL lease is located in the village of Batupali, within the Regency (Kabupaten) of Morowali in the Province of Central Sulawesi, Indonesia. The location of the area is shown in Figure 1. Access to the ETL concession, from Jakarta, is by a commercial flight (3 hours) to Kendari, then approximately 9 and half hours by car to the ETL camp site. Figure 2 shows the access from Kendari airport to the ETL project.

1.3. Mining Lease Details

The ETL project mining lease (IUP) area covers 1,159Ha for operation and production of nickel and its associated minerals. The IUP is located in the East Indonesian Ophiolite Belt and for this reason, is surrounded by numerous other nickel mining tenements. The location is also within 50km, of one of Indonesia's largest nickel smelting and industrial hubs known as Indonesia Morowali Industrial Park (IMIP). The concession map for the area is shown in Figure 3.

Figure 1 Project location map in Indonesia

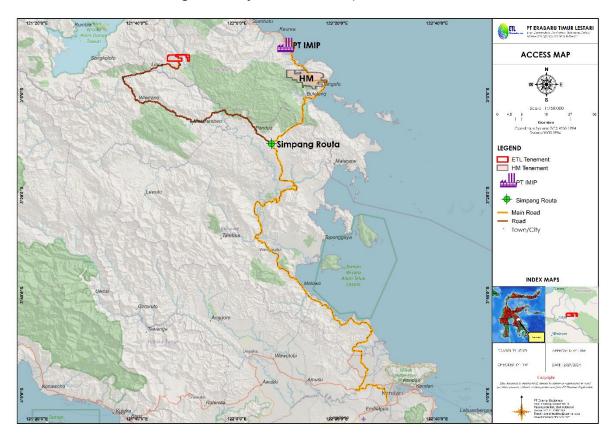


Figure 2 Project access from Kendari City

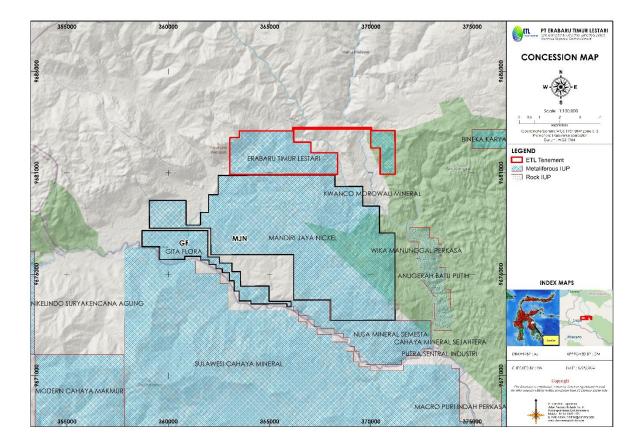


Figure 3 PT Erabaru Timur Lestari concession map

1.4. Forestry and Land Use

Approximately 95% of the ETL IUP area is covered by "area for other uses" (APL), which has no requirement for Forestry permits for exploration or mining. Approximately 5% Conversion Production Forest (HPK) where Forestry permits will be required. Figure 4 shows the ETL lease area on the published Forestry Map of Indonesia.

Figure 5 is a satellite image that displays the forest condition in the area. No villages are located within the concession boundaries and no formal, commercial plantations or farms occur within the project area. Subsistence agriculture, by local people, is occuring in some parts of the concession.



Figure 4 Forestry map of the ETL project area

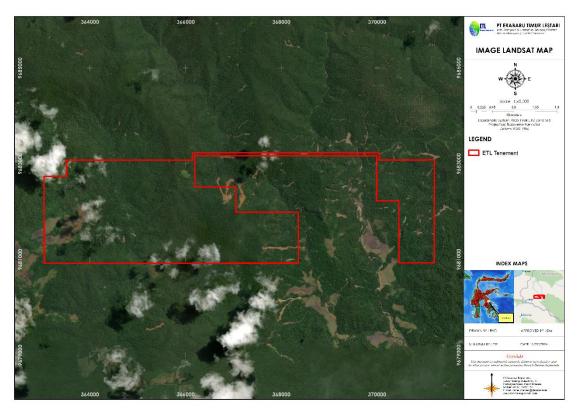


Figure 5 Satellite map displaying forest and land condition of the ETL project area

2 GEOLOGY

2.1. Regional Geology

The regional tectonic setting for Central Sulawesi is the result of a complex collision between 3 of the earth's major crustal plates namely, the Australian plate, the Pacific plate, and the Eurasian plate. As a result, three smaller plates have formed in this collision zone known as the Sunda Plate, Philippine Plate and Caroline Plate. The complex interaction between all these tectonic plates has resulted in of sections of the seafloor to be uplifted and deposited onshore in Sulawesi, North Maluku, and Papua. This is the origin of the East Indonesian Ophiolite Belt which is one of the largest ophiolite regions in the world and the source of nickel laterite deposits in East Indonesia. Ophiolites are the result of the process of obduction of oceanic crust and mantle to a position on top of continental rocks. This intense structural geological setting is also the reason major geological structures such as the Palu, Matano and Lawanopo faults dissect the Central Sulawesi region and control the distribution of rocks in the area.

The ETL project area is located on the southeast arm of Sulawesi where large gravitational collapse structures of the offshore Tolo Trough, east of Morowali, are interpreted to be caused by the regional exhumation of this part of Sulawesi (modified after Rudyawan and Hall, 2012; Titu-Eki and Hall, 2020), see Figure 6.

From the geological map of the Bungku Quadrangle of Sulawesi, published by the Indonesian Geological Research and Development Center (Simandjuntak, Rusmana, Supandjono & Koswara, 1993), the ETL project area is covered by the Matano Formation (Km) and Salodik Formation (Tems) as shown in Figure 7.

Description of the rock types on the Regional Geology Map are as follows:

Salodik Formation (Tems): Calcilutite, sandy limestone, marl, sandstone, and intercalation of chert.

Matano Formation (Km): Calcilutite, marl and shale with radiolaria chert intercalation.

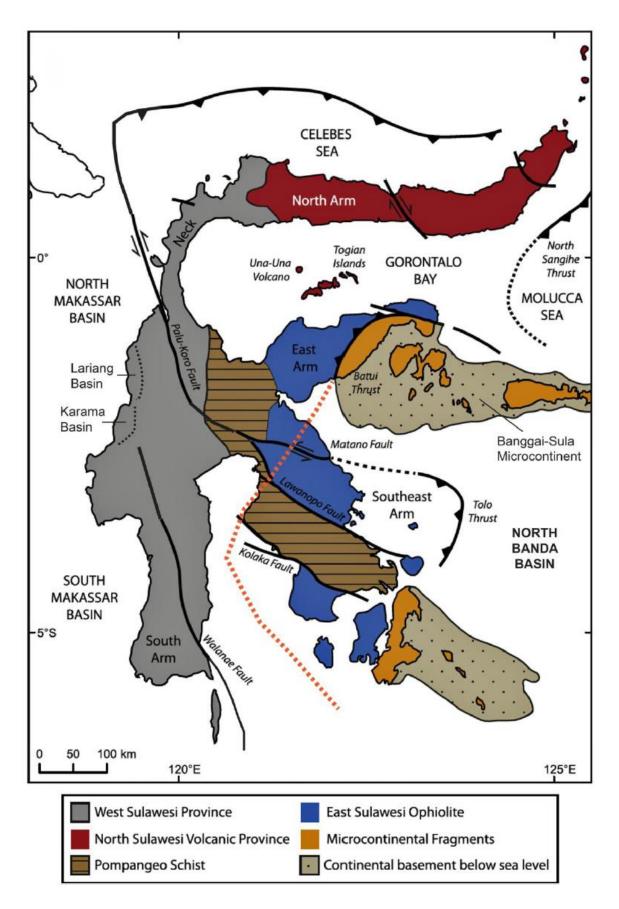
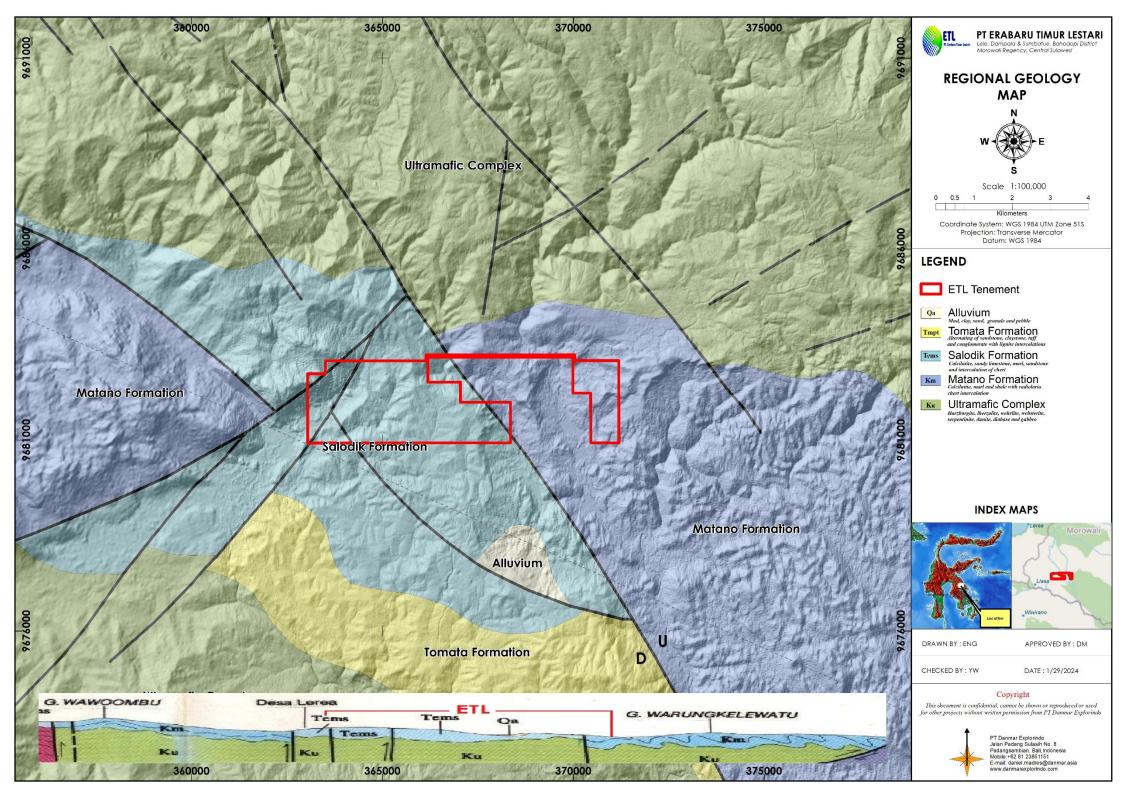



Figure 6 Major geological unit and faults of Sulawesi (Modified after White er al., 2014)

Age			Surficial Deposits	Sedimentary and Volcanic Rocks Mendala Sulawesi Timur	lgneous Rock Eastern Sulawesi Ophiolite Belt	Sedimentary Rocks Mend Su	ala Banggai-	
	Quarternary	Holoce		Qa				
	j	Pleistoc						
		Pliocer			Tmpt			
		Late Miocene Middle						
			Early					
Cenozoic	Tertiary		Late					
		Oligocene	Middle				Tems	
			Early Late					
		Eocene	Middle			\sim	$\langle \rangle$	\frown
		Early Paleocene		\sim	$\sim\sim\sim$	\sim \sim		\bigcirc \bigcirc
		Paleoce	Late					
Mesozoic		Cretaceous	Early		Km	Ku		JKm
		Jurassic					Jn	ЭКШ
							Tkjt	

Table 1 Generalized chronostratigraphy of the project area

2.2. Local Geology

Although the regional geology map shows that the ETL concession area is part of the Salodik and Matano formations, in the central part of the area (Block D), the lithology is almost entirely a molasse conglomerate deposit. The fragments and the matrix of the conglomerate, consist of predominently olivine rich rocks such as peridotite and other igneous rocks such as gabbro and andesite. The conglomerate contains well rounded, poorly sorted fragments ranging in size from boulders to pebbles, sand and silt. The conglomerate probably formed after ultramafic rocks were transported in the intense erosion of recently uplifted mountains by rivers and streams and redeposited unconformably on top of the Salodik Formation. This molasse conglomerate is the source rock for the nickel laterite at ETL. The conglomerate tend to have a porous sand matrix that is often filled by supergene silicate precipitates.

When the molasse conglomerates are exposed to humid, tropical climates over a long period of time laterization can occur as the rocks are weathered. In this process of weathering by rain, soluble minerals are leached away and less soluble minerals such as iron, nickel and cobalt are left behind in the weathering profile. This laterization process is influenced by the climate, geological structure, rock type, permeability, and topography over long periods of time, to form a soil profile in which minerals containing nickel and other elements can be depleted in some places and concentrated in other areas. Within the ground, the leaching process is enabled by the permeability of the bedrock, often as a result of tectonic movement, causing fracturing and shearing creating conduits for the flow of mineral rich solutions leached from above.

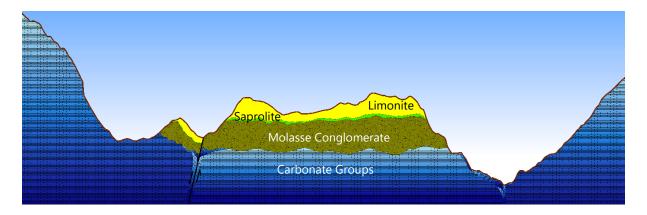


Figure 8 Conceptual geology of the project area

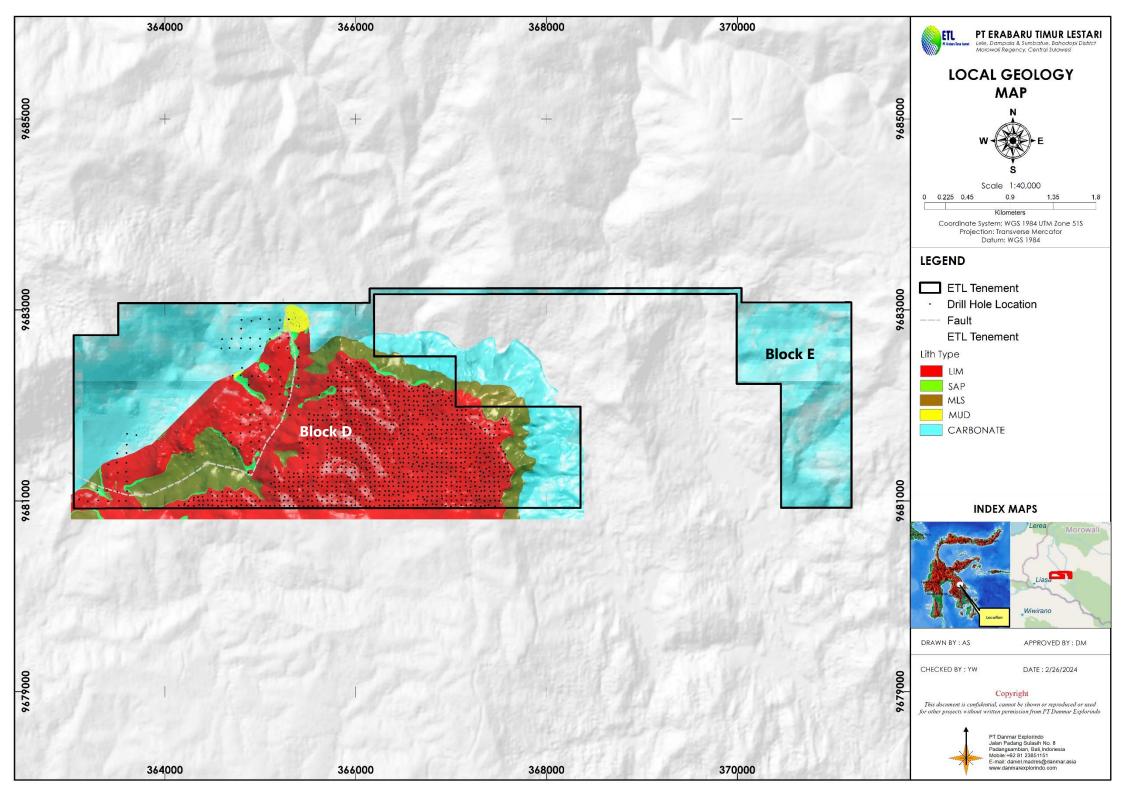


Photo 1 Molasse conglomerate outcrop at ETL

Photo 2 Garnierite mineral filled the conglomerate matrix

In the northern part of the ETL area, several drill holes intersected sedimentary rocks such as dolomite, siltstone and limestone. At this time, this area is considered as carbonate group from Salodik Formation.

2.3. Mineralisation

The nickel laterite in the project area is assumed to occur as a product of supergene enrichment during the laterization of the molasse conglomerate. Fragments and matrix of the conglomerate, that are relatively high in nickel content, such as dunite and high-olivine peridotites, are the likely to yield higher concentrations of nickel in the resulting laterite.

Certain elements such as nickel (Ni), cobalt (Co) and manganese (Mn) are relatively soluble in the acidic terrestrial (rain)waters which tend to percolate down the laterite profile from the surface but become insoluble as the waters reach the low ph ground water and are precipitated.

In the project area, nickel grade in the limonite layer has the average of 1.05% Ni while the saprolite layer has an average nickel grade of 1.32%. This is likely be a consequence of the poorly sorted molasse conglomerate composition and the fluctuation of the acidic terrestrial waters and ground water table during chemical weathering process of the laterite.

Chromite (Cr_2O_3) is relatively immobile, compared to nickel, in acidic rainwater and for this reason is found concentrated in the limonite profile. Chromite tends to be concentrated at the upper and middle part of the limonite zone and have a good correlation with Fe (see Figure 7). The average grade for Chromite in the limonite zone is 2.88%, while in the saprolite 1.38%.

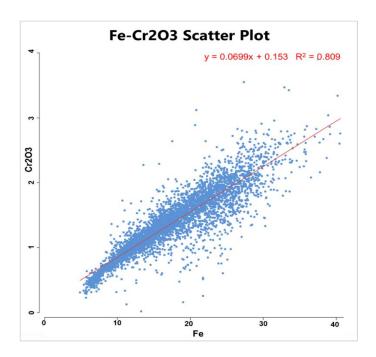


Figure 10 Correlation between Fe and Cr₂O₃ from all samples

Cobalt has relatively lower mobility than nickel in acidic rainwater and for this reason is found more concentrated in the limonite profile. Cobalt tends to be precipitated either at the lower part of the limonite zone or in the saprolite/ limonite transition zone. The average grade for cobalt in the limonite is 0.11%, while in the saprolite 0.04%.

2.4. Previous Exploration, Resource Studies and Reports

In 1999, Rio Tinto began exploring a large area that covered the northern part of Konawe and the the southern part of Morowali Regencies, which apparently included at least some of the current ETL area. Eventually, PT Rio Tinto took up an IUP license in 2010 and subsequently entered into a joint venture with Sherritt International from Canada. Mapping, GPR and drilling were carried out in the areas where, PT Bintang Delapan is currently located. From the data available at the time of writing this report, it appears that no previous work is documented within the ETL area.

During 2010, PT Hengjaya Nickel Utama and PT Mandiri Jaya Nickel did field mapping in the area, where ETL is located today and nickel laterite was identified in the area.

3. CURRENT EXPLORATION PROGRAM METHOD

3.1. Ultra Ground Penetrating Radar Survey

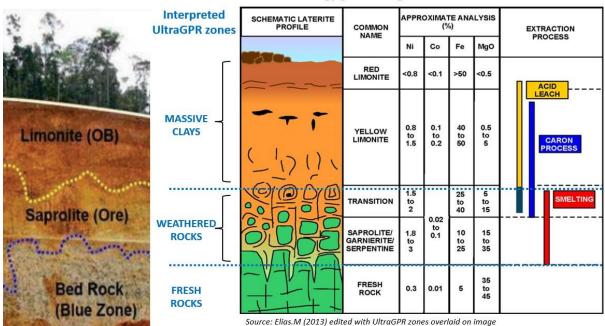

Groundradar's UltraGPR technology is a geophysical survey technique that can be used to detect subsurface geological layering and structure in nickel laterite. Relatively quick and easy to apply in the field, UltraGPR enhances the exploration process for laterites by detecting laterite thickness and bedrock morphology. The use of the UltraGPR survey is designed to increase the confidence of geological interpretation, provide a guide to thickness and depth of the target layers and help to optimize drill programs to focus on the best areas. As with all geophysical methods, UltraGPR provides supportive data for points of observation provided by drilling for Resource estimation using the JORC Code.

Photo 3 Example survey acquisition using UltraGPR (source: Groundradar.com)

At ETL, UltraGPR has been a useful exploration tool to indicate the lithological contact between limonite (massive clays) and the saprolite (weathered rocks) as well as the bedrock. Results

provide indicative volumes of potential limonite and saprolite located within the survey area. Results combined with drilling data can give greater confidence of nickel laterite ore body structure, dimensions, and distribution. Figure 8 shows the close correlation of the interpreted GPR zones to the commonly named weathering profiles of nickel laterite.

TYPICAL LATERITE WEATHERING PROFILE FOR LIMONITE / SAPROLITE With indicative mineralogy grades ranges

Figure 11 Diagrammatic representation of a typical laterite profile in Sulawesi

Highly weathered laterite zones are typically structurally controlled. Geological structure can influence the distribution of where thicker, higher grade limonite and saprolite may be found. Although these structures can often be interpreted from the topographic surface relief, with the help of UltraGPR, these structures can be delineated with relative confidence providing drill targets to optimize drill programs towards the thickest and most prospective locations. Figure 9 shows an example of typical survey results using UltraGPR technologies on laterite deposits of Sulawesi.

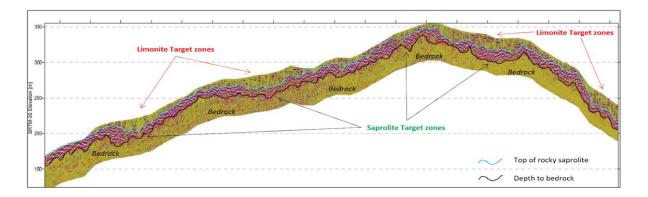


Figure 12 Example UltraGPR survey of a typical laterite profile in Sulawesi

3.2. Drilling

In June 2023, four units of Dexdrill 200 started to systematically drill the ETL nickel laterite project. The drills are ideally suited to laterite core drilling as they are lightweight and man portable. They have the added advantages of providing local people employment for manual moving between drill locations and also have low environmental impact with no need for road access or dozer support. The drills use HQ triple tube core barrels.

Photo 4 Dexdrill 200 operating at ETL

Drilling was carried out using standard operating procedures designed to ensure drill data complies with the JORC Code to be used as points of observation in this study.

3.2.1. Core Recoveries

In the current drill program core runs are restricted to a maximum of 1m intervals to optimize core recoveries. Core is extracted from the inner tube and directly transferred to the core box. core based each core run. The core is then immediately measured for length to determine core recovery and or swelling. Core is arranged, in maximum 1m runs, inside the core box with each run filling a new row in the core box. Consecutive core runs are also arranged in new rows starting on the left side of the core box to avoid any mixing or contamination from other core samples. The bottom of each core interval is labeled for its depth so that the depth of the core is clearly displayed. Core boxes that are partially filled at the wellsite, and not yet completed, are carefully covered so that the samples are kept free from contamination and damage while drilling of the hole is completed.

3.2.2. LiDAR and Drill Collar Survey

The topography of the ETL IUP has been surveyed using LiDAR to produce a digital terrain model of the ground surface in the area. The accuracy of the LiDAR is within 15cm vertical and 40cm in the horizontal plain which is appropriate to support Resource estimates. Drill collar survey using E-Survey RTK GPS equipment, was used to ground survey the drill hole locations.

3.2.3. Geological Logging of Cores

The well site geologists follow a standard operating procedure for the core logging process so that all geological logs are standardized. The core description starts at the surface and follows each 1m core run until the total depth is reached. The core description in a standard format allows the data is easily usable and recognizable by the mine technical team. Core that contains more than 20cm of solid rock is recorded as a geological boundary. The core length is checked against the actual depth recorded in the core box. The detailed description is completed as required in the logging form.

Photo 5 Drill collar survey at ETL

Photo 6 Logging cores at wellsite at ETL

3.2.4. Core Photography

With the core boxes in position, in a level place with no cover, in consecutive order, core photos can take place. Checks are carried out to make sure that the depth labels are clearly visible and in position at the bottom of each core run. Cores with swelling or core loss are clearly marked. The well site geologist checks to make sure the core box label show the correct Hole Identification, sequential arrangement, depth interval, date of start and finish drilling, EOH (end of hole), initials of the wellsite geologist and the rig identification number. When this is ready photos are taken in good light conditions making sure to minimize shadows and reflections.

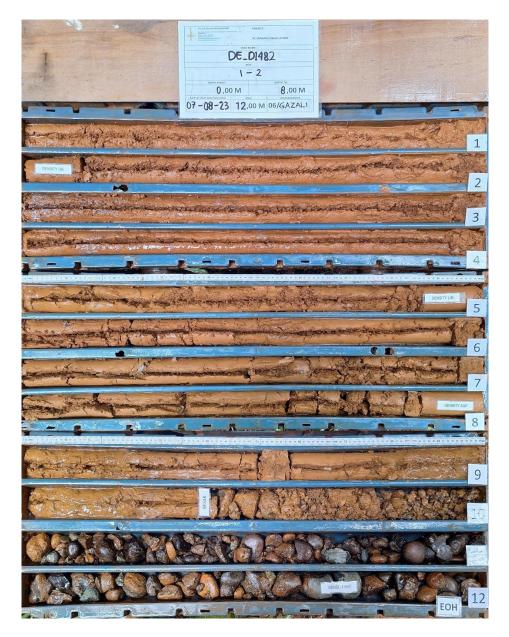


Photo 7 Core photo example from ETL

3.2.5. Drill Hole Sample Handling

Plastic sample bags are always double layered to protect the integrity of the samples against accidental contamination, damage, or loss. Samples are bagged according to the geological horizon from which they belong and or in 1meter intervals, if there is no geological boundary and the plastic identity label placed inside. After each core box is emptied the outer layer sample bag is tied with string in a bow so that it can easily be undone at the camp for rechecking and final labeling. During the sampling process, the sample form is continuously filled out so that as samples are bagged every sample is recorded. Checks are made to ensure the sample intervals and labels are correct. Rechecks are done so that the sample intervals can be reconciled and there are no gaps in the depth intervals. Samples are then packed in sacks and tied with flagging tape showing the hole identification. If stored in the field the sacks are covered for protection from the weather. Samples are normally transported to the field camp daily. Sample numbers and the depth interval labels are recorded on sampling forms which are photographed and sent to Danmar head office for recording in the ETL database. During this sample labeling process, the condition of the sample bag is checked and changed if damaged. The total number of samples are rechecked against the total number of samples logged in the field at the wellsite.

Photo 8 Sample packing at the well site

3.3. Laboratory Sample and Analysis Procedures

3.3.1. Field Sample Preparation

Once samples from the field are packed and labeled at the well site and delivered to the ETL sample preparation facility, a reconciliation and checking of sample numbers, labels and condition is carried out before being packed and transported to internal laboratory operated by PT Hengjaya Mineralindo.

Photo 9 Core sample processing at ETL camp

3.3.2. Sample Security, Audits and Review

Sample core store at the ETL field office is locked when unattended and has security which operates 24 hours per day. Sample number checks are carried out at the drill site, sample store shed and again at the assay laboratory to make sure samples are not missed or lost in transpotation.

3.3.3. Laboratory QA/QC Protocol

Full cores are bagged, labeled and sent to the internal laboratory operated by PT Hengjaya Mineralindo where strict QA/QC protocols are used to ensure assay result accuracy. The Henjaya Mineralindo QA/QC laboratory Standard Operational Prosedure is documented in the Appendix 3.

4. RESULTS

4.1. GPR Survey

UltraGPR survey results are summarized in Table 2.

Block-ID	Total Length Plan	2D Length (km)
	Total Line clearing Completed	68.7
Block D	Total Line GPR acquisition	68.7
	Total Line GPR processed	68.7
	Total Line clearing Completed	
Block E	Total Line GPR acquisition	17.9
	Total Line GPR processed	17.9
	Total Line clearing Completed	86.6
UltraGPR completed	Total Line GPR acquisition	86.6
	Total Line GPR processed	86.6

Table 2 UltraGPR survey summary

The survey lines shown in Figure 10 below. The UltraGPR survey data from all areas were of good quality and were easily interpretable. Maps were created showing the interpreted thickness of limonite, saprolite and depth to bedrock. The total area surveyed was approximately 839.8Ha. The nominal spacing between GPR lines is 200m spacing. The UltraGPR survey grid, where possible, is in the same location as the drill lines. Table 3 shows the resulting interpretation for laterite volumes using the UltraGPR data.

Prospect	Block-ID	Material Type	Area	Volume	Tonnes (Wet)
		Sediments	159.7	18,000,000	32,400,000
	Massive Clays (Lim/Sap)	651	42,000,000	75,600,000	
PT	Block D	Weathered Rocks (Rocky Sap)	051	65,000,000	104,000,000
Erabaru		Sub-total	651	125,000,000	212,000,000
Timur		Massive Clays (Lim/Sap)	100.0	2,000,000	3,600,000
Lestari	Block E	Weathered Rocks (Rocky Sap)	188.8	5,000,000	8,000,000
		Sub-total	188.8	7,000,000	11,600,000
		Total Laterite	839.8	132,000,000	223,600,000

Table 3 UltraGPR survey laterite volume interpretation

*Note: Using density assumptions for limonite 1.8 and saprolite 1.6



Figure 13 UltraGPR survey lines on topographic map

An example of an UltraGPR section interpretation covering 1,350m in Block D area is shown in Figure 11.

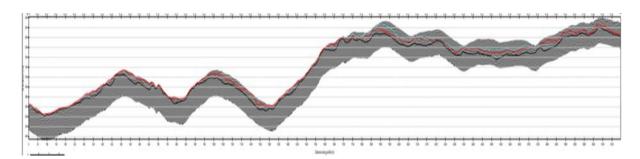


Figure 14 UltraGPR section line interpretation example ETL Block D

From The UltraGPR data in Block D, the thickness of limonite appears to average around 6.3m over the survey area, with only some relatively limited zones showing thickness up to 32.3m. The thickness of rocky saprolite, which we now know included conglomerate bedrock, varies

from 0 – 40.4m, with an average 9.8m across all target zones. The total thickness of laterite varies from 0 m to 48.1m with average of 19m of total combined thickness of limonite and saprolite and conglomerate.

In Block E, from the UltraGPR data, the thickness of limonite appears to average around 1.2m over the survey area, with only some relatively limited zones showing thickness up to 9.1m. The thickness of rocky saprolite varies from 0 - 18.6m, with an average 2.6m across all target zones. The total thickness of laterite varies from 0 m to 25.9m with average of 3.8m of total combined thickness of limonite and rocky saprolite.

The limonite thickness, saprolite thickness and depth to bedrock, interpreted from UltraGPR survey data, is shown in Figure 12, Figure 13, and Figure 14 respectively.

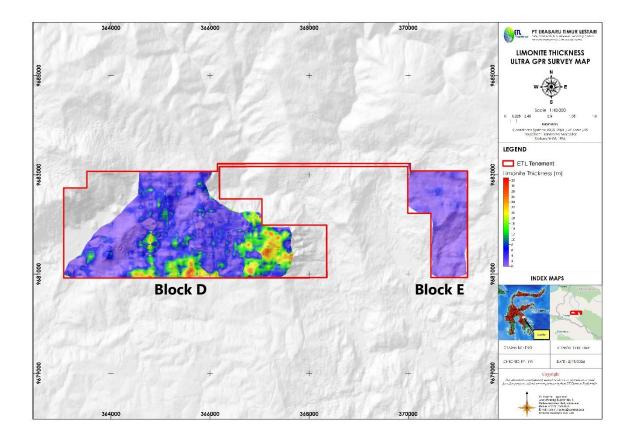


Figure 15 Limonite thickness interpreted from the UltraGPR survey

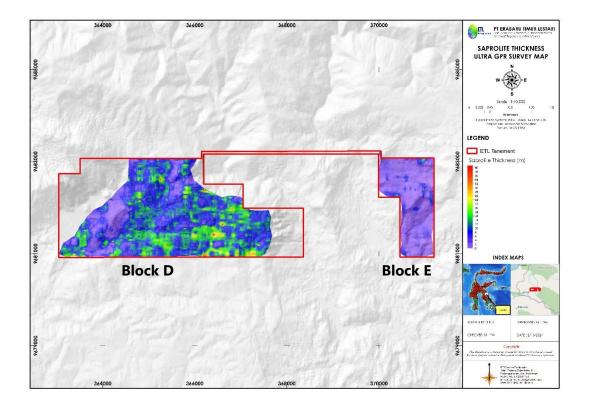


Figure 16 Saprolite thickness interpreted from the UltraGPR survey

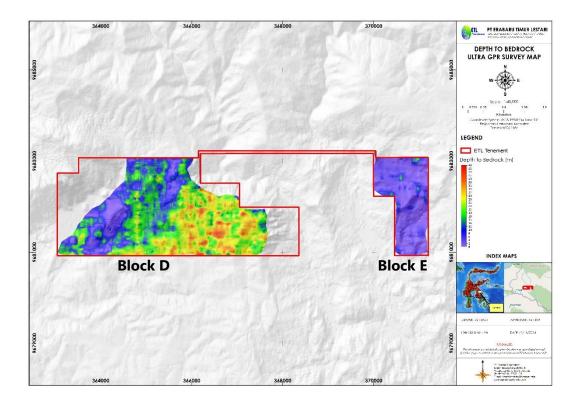


Figure 17 Depth to bedrock interpreted from UltraGPR survey

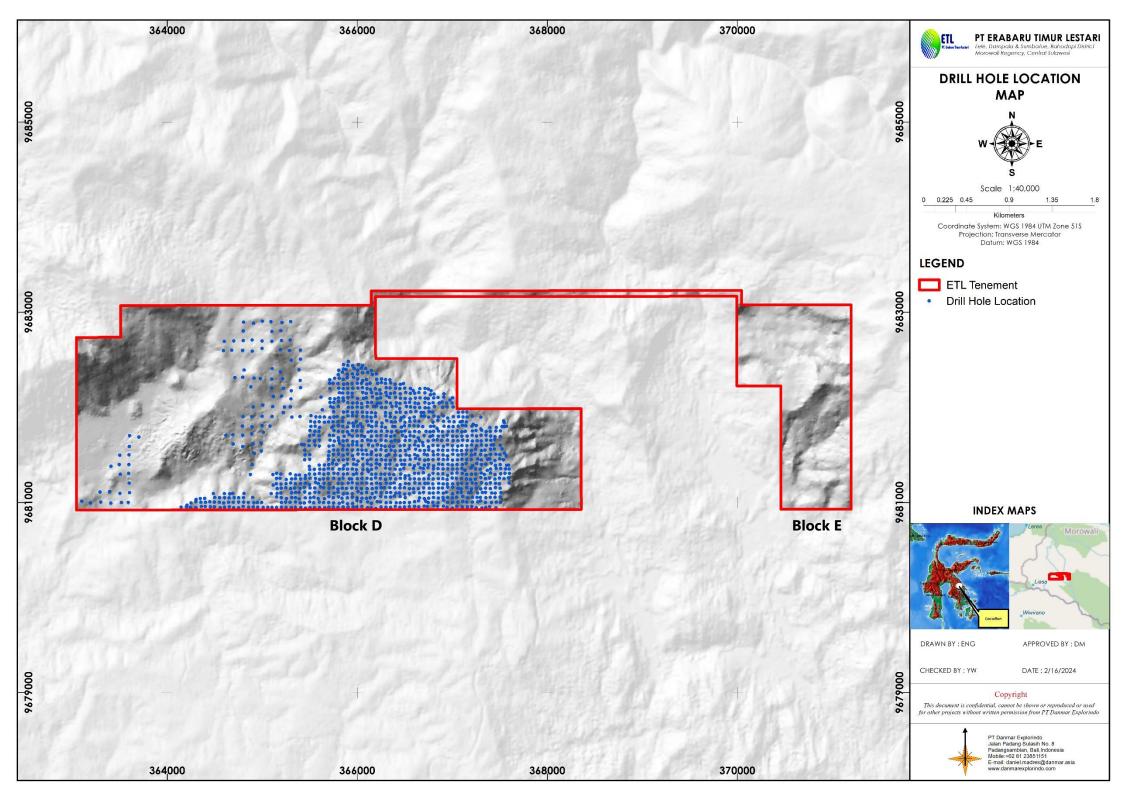
4.2. Drill Results

Validated drill data used in this study is summarized below in Table 4.

		Drill	ing Used in Resourc	e	Drilling Excluded from Resource			
Block	Area (Ha)	Drillholes	Cummulative (m)	Assays	Drillholes	Cummulative (m)	Assays	
Block D	340	1,337	32,798	32,933	1	40	52	

Table 4 Drill data statistics

For the purpose of this Resource estimate, a database of validated drilling data including 1,337 drill holes with a cumulative total depth of 32,798m and 32,933 analyses results has been constructed. Most of the drilling is on a systematic grid, providing a regular spread of drill data over most of the laterite areas in Block D. Geotechnical drill holes are excluded from the geological model since they do not have the geochemical (assay) analysis data. One hole (DE_D50_1896) was excluded from the Resource estimates because of the drillhole location was clearly eroneous as it was only 16m from a pre-existing drillhole.


Drill spacing has been done at 50m and 100m spacing with the objective of Resource definition in these areas. Figure 15 shows the drill location map.

The distribution of drilling in each Resource block area is summarized in Table 5.

Block	Drilling Spacing (m)						
	<25-25	25-50	50-100	Exploration			
Block D	-	1240	98	-			
% of Total Holes	0.0%	92.7%	7.3%	0.0%			

Table 5 Drilling distribution per Block

Core recovery data is summarized below. Data from the latest drilling programs was systematically recorded and includes core recovery measurements supported by core photography. Core recovery data is summarized in Table 6.

Dete Course	Litheless		Recorded Co	Not Recorded			
Data Source	Lithology	≥ 95%	95%-90%	90%-85%	< 85%	Not Recorded	
	Limonite	99.94%	0.01%	0.03%	0.02%	0.00%	
	Saprolite	99.21%	0.32%	0.32%	0.15%	0.00%	
Danmar Explorindo	Molasse	98.98%	0.41%	0.49%	0.11%	0.00%	
	Carbonate	100.00%	0.00%	0.00%	0.00%	0.00%	
	Average	99.53%	0.19%	0.21%	0.07%	0.00%	

Table 6 Core recoveries

4.3. Survey Results

LiDAR topography survey was carried out by PT Hengjaya Mineralindo and covers the entire ETL IUP. The work was carried out between March and July 2023.

The resulting topography survey map of the IUP area is shown in Figure 16.

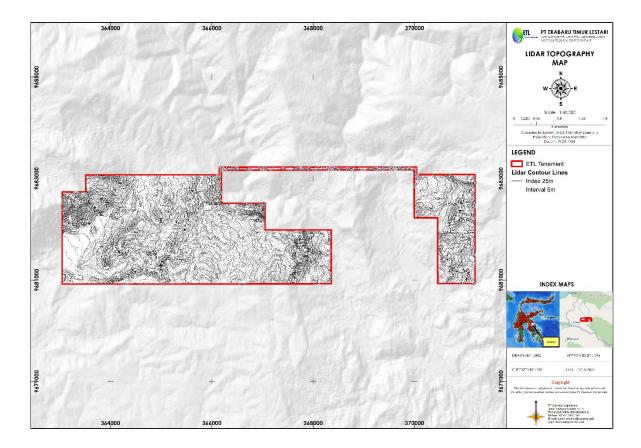


Figure 19 Topography map of the IUP area

Drill collars have been surveyed by ground survey and these results are summarized in Table 7.

Survey Company	Date of Survey	Total Drill holes
PT Hengjaya Mineralindo	2023	1,337

Table 7 Drill collar ground survey

4.4. Assay Analysis Results

32,945 XRF sample analyses have been performed on drill core samples to document the grade characteristics throughout the Block D, Nickel Resource area at ETL at this time. Sample interval has been predominantly 1m as per each core run. Figure 17 displays the sample interval data.

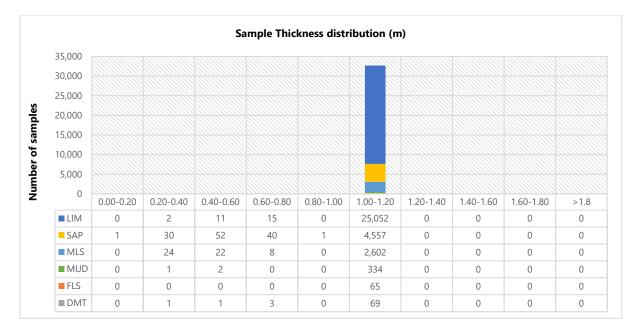


Figure 20 Sample interval per lithology

4.5. Insitu Density and Moisture Measurements

Insitu density measurements of drill core samples were made for each lithological layer in each hole drilled since June 2023. A total of 3,908 density measurements on drill core samples have been performed. These are insitu density measurements for laterite layers in the ground. Samples relating to limonite, saprolite and molasse conglomerate, used in this Resource assessment are summarised below;

Lithology	Density t/m3 (Wet)	No. of Sample
Limonite	1.76	1,328
Saprolite	1.60	1,252
Molasse	2.70	1,328
Т	3,908	

Table 8 Density measurement from core samples

Moisture measurements were made by PT Hengjaya laboratory for all samples. Since June 2023, every drill core sample was measured for Moisture Content. A total 32,460 moisture measurement were performed. The results are summarized in Table 9 below.

 Table 9 Moisture measurement from core sample by Hengjaya laboratory

Lithology	Average Moisture Content	Standard deviation	No. of samples
Limonite	44.96	6.90	25,080
Saprolite	39.95	10.75	4,681
Molasse	5.98	5.58	2,656
Carbonate	26.5	13.83	476

4.6. Assay Sample Quality Assurance and Control Results

A summary of the 32,933 sample assays results is shown in Table 10.

	A.c.a.v.	Core	Average Assay results XRF dry							
Lithology	Assay Observations	Recovery (%)	Ni %	Co %	Fe %	MgO %	SiO₂ %	Cr ₂ O ₃ %	SM- Ratio	
Limonite	25,113	99.99	1.05	0.110	41.06	1.75	6.33	2.88	3.629	
Saprolite	4,688	99.88	1.32	0.040	17.58	12.37	35.15	1.38	2.842	
Molasse	2,656	99.87	0.39	0.016	6.47	23.79	39.06	0.46	1.642	
Carbonate	476	100.00	0.10	0.015	7.13	2.47	47.59	0.20	19.251	
Total	32,933	99.97	1.02	0.091	34.44	5.05	13.67	2.44	2.709	

Table 10 Sample assay summary

4.6.1. Coarse Blanks and Standard

Contamination is assessed by using coarse blank samples which are samples that are barren the elements being tested. At ETL these are Ni and Fe. Limestone was used as coarse blank because of low Ni and Fe. For the ETL analysis, blank samples and OREAS are inserted within exploration batch streams at rate of 4 OREAS and 4 coarse blanks for every 92 exploration core samples to test for cross contamination.

4.6.2. Coarse Duplicates

Double roll crush duplicate samples (DR) are the duplicate samples that are taken from the double roll crusher. The coarse duplicate samples were inserted into the sampling stream at a rate of 1 per every 50 sample.

A scatterplot (Figure 18) showing the results for the four elements Ni, Fe, MgO and SiO₂ from the original and double roll crush duplicate sample results from 639 exploration assays were taken over the period of June 2023 to January 2024. The graphs show the original and double roll crush duplicate elemental values in black plotted on a middle red line representing the mean elemental values of these samples. The two yellow dashed lines above and below the mean line represent the correlation between the assay variables with a variance of +5% and -5%, and the outer green dashed lines represent the variance between the assay variables of +10% and -10%. Scatterplots, where the results slope from the lower left to upper right, indicate a positive correlation.

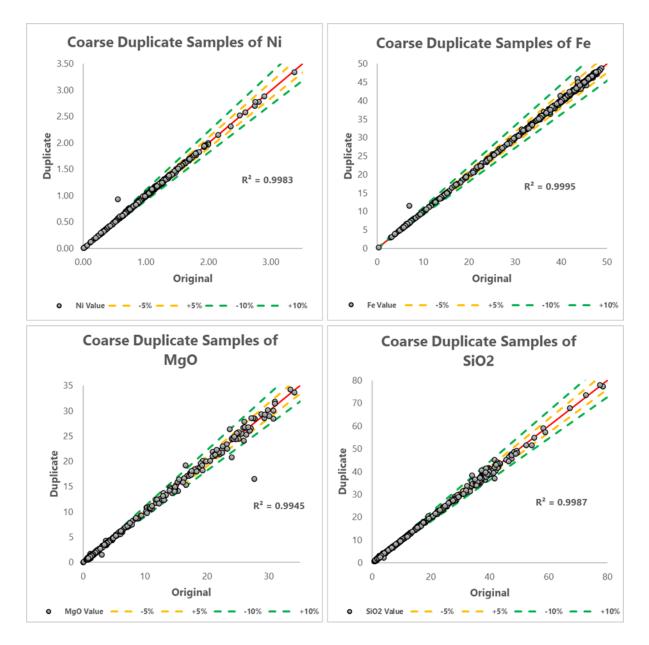


Figure 21 Scatterplot results of 639 double roll crush duplicate vs original assays

The figures above show that with all four elements the black dots plot within the +10% and -10% variance lines. In fact, the majority plotted between the +5% and -5% yellow dashed lines, showing there is a high correlation between the original and the duplicate assay values. This is further confirmed with the correlation coefficient (R^2) values more than 0.99 for the elements being assayed. These figures confirm the high precision of the double roll crushing reflecting an excellent sub-sampling precision and preparation quality.

4.6.3. Pulverizer Duplicates

Pulverize duplicates samples (DA) are second splits of the fine-grained pulp samples that are collected in the final incremental splitting of the samples after pulverizing. The pulp duplicates are indicators of the analytical precision, which can be affected by the quality of the pulverization process and the homogenization of the sample. The duplicate samples were inserted to analyzed every 50 sample with the size of the sample is ~ 200 Mesh (75 μ m).

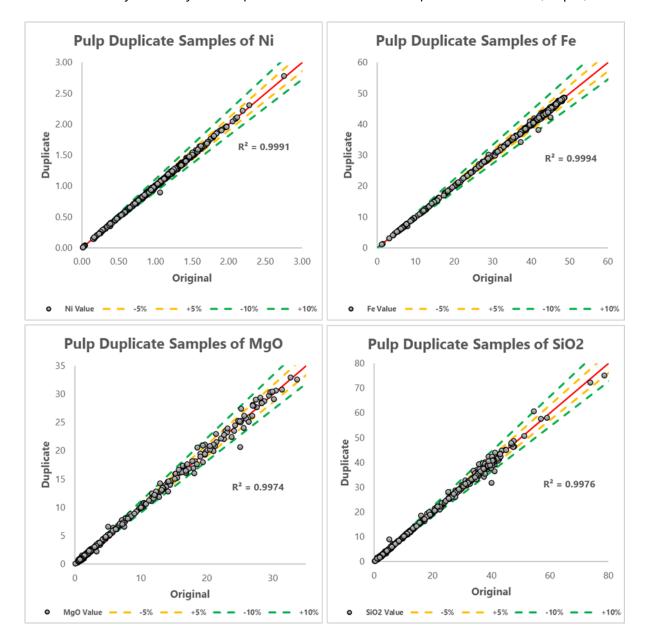


Figure 22 Scatterplot results of 637 plots for pulp duplicate vs original assays

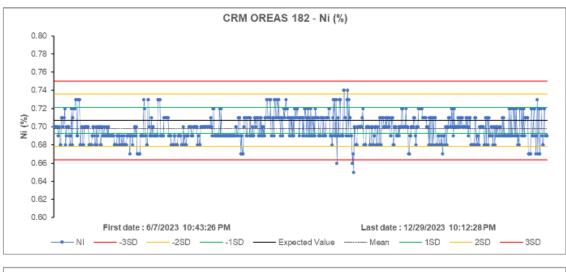
The scatterplots (Figure 19) for the elements Ni, Fe, MgO and SiO₂ from pulp duplicate and original assays from 637 pulp samples analysed between June 2023 to January 2024. The scatterplots are similar to those shown in Figure 18 for the double roll crush duplicate assays, where the majority plotted between the +5% and -5% yellow dashed lines, showing there is a high correlation between the original and the pulp duplicate assay values and reflected with correlation coefficients more than 0.99. These figures confirm the high precision of the pulp duplicate samples indicates the pulverization process and the homogenization of the sample are good.

4.6.4. Certified Reference Materials

Certified Reference Materials, (CRM's), are samples with certified grades, prepared under specially controlled conditions and have a certified mean value for the contained elements in that standard, along with associated confidence and tolerance limits. They are used in Quality Control to monitor the values of the standard against those of the unknown samples being assayed and allow the accuracy of the assay process to be monitored. Hengjaya Assay Laboratory use CRMs produced by OREAS (Ore Research & Exploration P/L, from Victoria, Australia). OREAS CRMs used are 7 Standards with certified Nickel values shows in the Table 11.

CRMs	Certified Nickel Values
OREAS 182	0.71
OREAS 184	1.02
OREAS 187	1.37
OREAS 192	1.77
OREAS 193	1.93
OREAS 194	2.13
OREAS 195	2.94

Table 11 Certified Nickel values of OREAS CRMs


In addition, these standards have certified standard deviations and state the 95% Confidence and Tolerance Limits with low and high values.

Figures 20, 21, and 22 are Shewhart Control Charts for the results of assays using the OREAS standards 182, 187, and 192 over eight months period. The assay results obtained, over a

period of time, are plotted on a chart of showing certified values against the number of samples assayed, with one dotted line showing the certified mean value and the zone between two yellow lines showing the expected value plus/minus two standard deviations, also referred to as Upper and Lower Warning Limits, and the zone between two red lines representing the Upper and Lower Control Limits at three standard deviations.

Good quality analyses will be characterized by random distribution points around the certified mean value, with 95% of the data points lying within two standard deviations of the mean. The same number of analyses should fall above and below the mean.

The OREAS Standard 182 (Figure 20) with total 737 samples show the results plotting within three standard deviations of the mean for both Ni and Fe, even though the mean value not really precise or shows a tendency to underestimation, the result still showing a good accuracy.

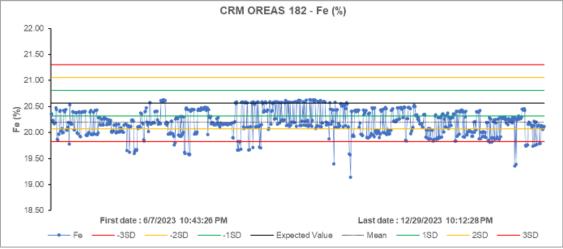


Figure 23 CRM OREAS182 - 737 samples analysis

Figure 21 shows the results for 797 samples of OREAS187 for Ni and Fe, with Ni and Fe showing good accuracy, 95% of the results plotting within two standard deviations of the mean, and similar numbers of samples above and below the mean. Some samples are showing a great variance from the expected value probably because of error while typing the type of Standard.

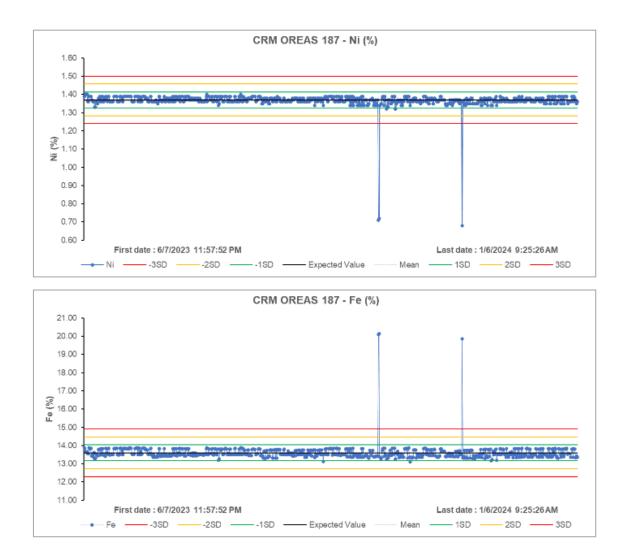


Figure 24 CRM OREAS187 - 797 samples analysis

The OREAS Standard 192 (Figure 22) with total 958 samples show the results plotting majority within two standard deviations of the mean for both Ni and Fe and showing a good accuracy. Same with OREAS Standard 187, some samples are showing a great variance from the expected value probably because of error while typing the type of Standard.

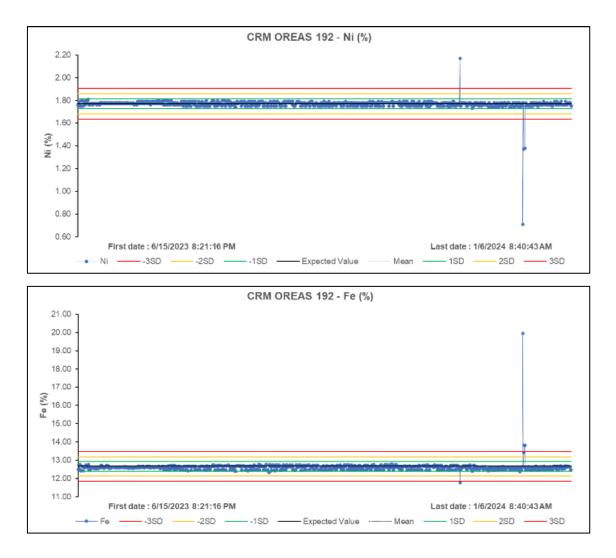


Figure 25 CRM OREAS192 - 958 samples analysis

For details of the CRM analysis see Appendix 3.

4.6.5. Replicate Samples

Replicate samples (REP) are the samples that were taken from the original sample before the preparation. Total 1,270 replicate samples were taken between June 2023 to January 2024 shows in scatterplots (Figure 26) for Ni, Fe, MgO and SiO₂. The format of the scatterplots is the same as for the previous scatterplots.

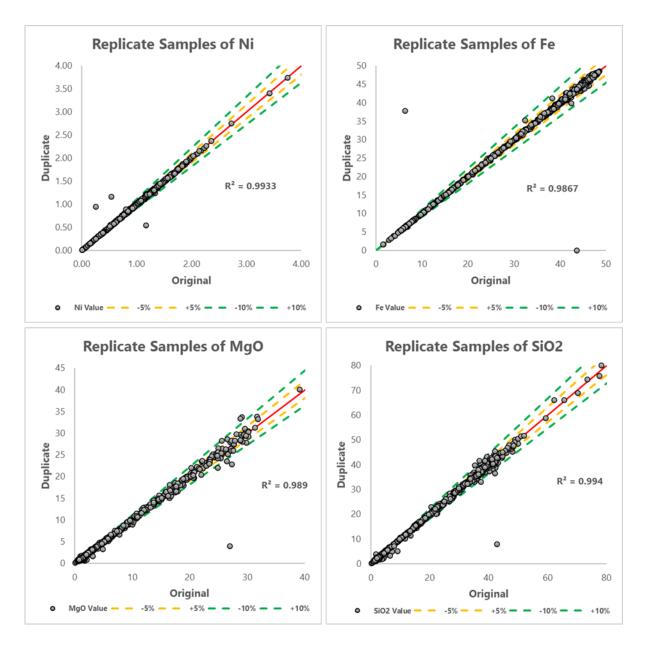


Figure 26 Scatterplot results of 1,270 plots for replicate vs original assays

The scatterplots for replicate sample assays show the majority of the results plotting within the two yellow dashed lines indicating a 95% confidence in the result plotting within these limits and is considered an excellent result. The graphs also show correlation coefficients of more than 0.98 which is indicating high precision on assay quality.

4.6.6. Interlaboratory Check Samples

Interlaboratory Check samples are second splits of both the coarse reject samples and the finer 200 # pulp samples that are routinely assayed at the HM Assay Lab and submitted to second, commercial, laboratories under a different sample number. These samples are used to assess the assay accuracy of the HM laboratory relative to the secondary, Tribhakti Inspektama Laboratory and Geoservices Laboratory.

The first batch was sent in September 2023 with total 60 samples to be checked. This batch of exploration samples were sent to the Tribhakti Inspektama Laboratory in Kendari where the coarse reject samples underwent pulverizing and incremental splitting, to be sent off for XRF assay, along with duplicate pulp assay samples. Once the samples assayed, the results were returned to the Assay Laboratory at the Tangofa site.

Figure 24 shows the results of the inter laboratory check sample tests comparing the results of 60 split Exploration coarse reject and 200# pulp samples assayed at the original HM assay laboratory with samples sent to the Tribhakti Inspektama assay Laboratory in Kendari.

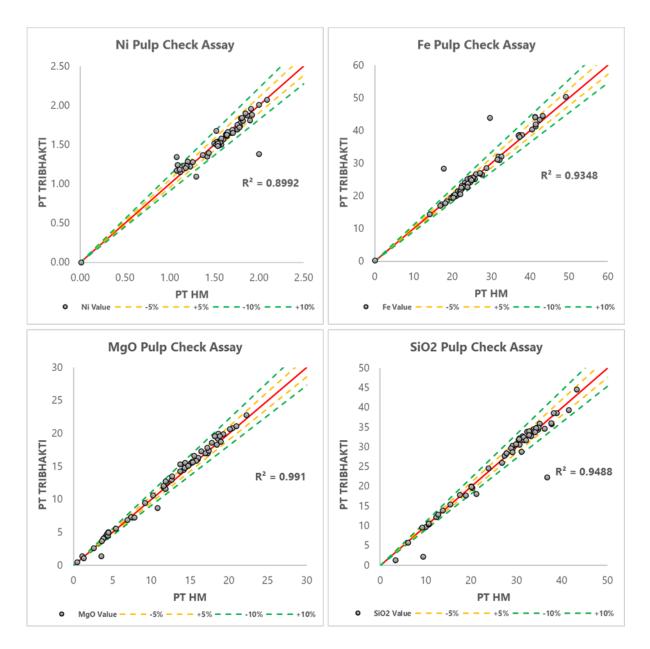


Figure 27 Scatterplot of HM original vs Tribhakti Inspektama duplicate assays

The scatterplots show differing precision for the different elements, with the best correlation between the results for MgO and SiO₂, 0.991 and 0.9488 respectively, Fe and Ni have lower correlations at 0.9348 and 0.8992.

Data for the results for the two laboratories shows a difference between the mean for the Ni and Fe values for the HM Lab as 1.54 % Ni and 26.54 % Fe against 1.56 % Ni and 27.09 % Fe for Tribhakti Inspektama, a difference of 0.02% for Ni and 0.55% for Fe. These represent a +/-

5% variance from the assay, a good precision and reflected with correlation coefficients of 0.8992 and 0.9348 with some of samples are outside the control line.

These results show lesser precision than the internal checks using Coarse Rejects, Pulp Assays and Replicate Assays at the HM Lab. This indicates the difference is likely to be due to different sample processing procedures at the two laboratories, and different accuracies and precision due to different equipment.

In October and November 2023, total 1,030 samples were sent for interlaboratory check at different labs. This batches of exploration samples were sent to the Geoservices Laboratory in Kendari where the coarse reject samples underwent pulverizing and incremental splitting, to be sent off for XRF assay at Geoservices Analytical Laboratory in Bandung, along with duplicate pulp assay samples. Geoservices then forwarded the HM pulp sample checks to their analytical lab as a different consignment and once the samples assayed, the results were returned to the Assay Laboratory at the Tangofa site.

Figure 25 shows the results of the inter laboratory check sample tests comparing the results of 1,030 split Exploration coarse reject and 200# pulp samples assayed at the original HM assay laboratory with samples sent to the Geoservices assay Laboratory in Bandung.

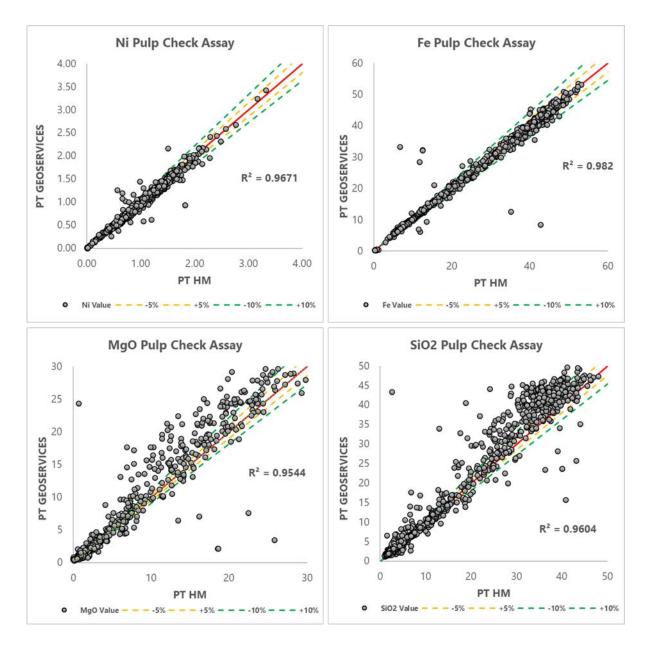


Figure 28 Scatterplot results of 1,030 plots of HM original vs Geoservices duplicate assays

Data for the results for the two laboratories shows a difference between the mean for the Ni and Fe values for the HM Lab as 0.99 % Ni and 31.19 % Fe against 0.97 % Ni and 31.12 % Fe for Geoservices, a difference of 0.02% for Ni and 0.07% for Fe. These represent a +/- 5% variance from the assay, a high precision and reflected with correlation coefficients of 0.9671 and 0.982 with some of samples are outside the control line.

These results also show lesser precision than was the case with the internal checks using Coarse Rejects, Pulp Assays and Replicate Assays at the HM Lab. This indicates the difference is likely

to be due to different sample processing procedures at the two laboratories, and different accuracies and precision due to different equipment. There is a difference between the pressed powder pellets used at the HM Lab with the Fused Bead system used at Geoservices. Similarly, the HM Assay Lab uses a Malvern Panalytical Epsilon 4 XRF and a Buker Puma S2 XRF that was brought into operation in 2021 and any differences between these XRF Units and those used at Geoservices could result in the small differences being recorded.

4.6.7. Control Sample Insertion Rates

During the period June 2023 to January 2024 a total of 32,945 exploration samples were processed at the Internal Hengjaya Assay Laboratory. The following check samples were added into this original sample stream:

	Exploration			Pulverized Duplicate		Replicate		CRM's		Interlab Checks	
Pediod .	Samples	Total Samples	%	Total Samples	%	Total Samples	%	Total Samples	%	Total Samples	%
June 2023 - Jan 2024	32,933	639	2%	637	2%	1,270	4%	4,187	13%	1,090	3%

Table 12 Sample Insertion Rates June 2023 – January 2024

The Coarse Reject and Pulp Duplicate samples each comprise 2% of the samples submitted which are considered to be good insertion rates. CRM's comprise 13% of the samples inserted which is also considered to be an appropriate rate.

1,270 Replicate samples were inserted as laboratory check samples at Hengjaya Assay Laboratory, with insertion rates 4%. The twin samples were not collected at the sample collection stage, because the whole drill core is sent for sample preparation and assay. Coarse blank and CRM were inserted with total insertion rates 8% to check for cross contamination.

In summary, a total of 7,823 check samples were inserted into the sample stream of 32,933 exploration samples and submitted for assay at the Hengjaya Assay Laboratory, which is 23.7% of the total samples. These insertion rates are considered to be sufficient to support good sample quality control appropriate for Mineral Resource estimation.

5. DATA VERIFICATION

The author visited the site in August 2023 during the exploration drilling program. The objective of the site visit was to review the protocols and processes in place to verify the data acquisition is suitable for use in this Resource study. Since then, field program datasets have also been reviewed, checked, and verified by comparing the original field data and core tray photos against the official Certificates of Analysis. A flowsheet for the data verification procedure is shown below.

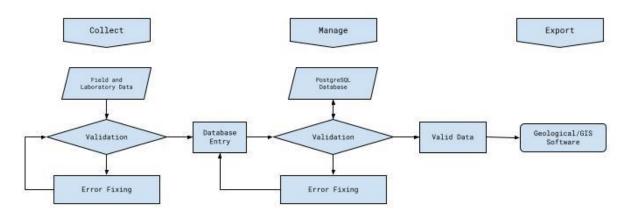


Figure 29 Simplified data verification workflow

5.1. Drill Hole Collar Elevation and LiDAR Topography

ETL has supplied a digital copy of LiDAR topographic data in CAD format. As this data was reviewed, not many variances between drill hole collar elevation and LiDAR topographic surface were identified. This is summarized in Figure 27 below.

From Figure 27, only 0.3% or 4 holes have difference in elevation greater than 0.5m and less than 1m between ground survey elevation and LiDAR elevation, which indicates the ground survey elevation is accurate and representative of the actual ground surface. The 4 holes, with the anomalous elevation, are currently being drapped onto the LiDAR surface for the purpose geological modelling in this report.

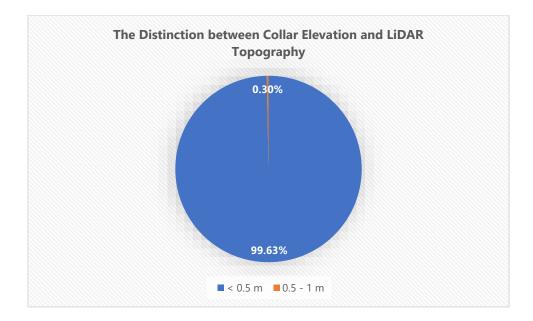


Figure 30 Discrepancy between collar elevation and LiDAR Topography

5.2. Database Validation

Data supplied by ETL field team has been checked and validated using PostgreSQL relational database software built specifically for this project by the authors of this report.

The database validation has been done for common errors and mistakes but not limited to;

- 1. Typing errors
- 2. Numbering errors
- 3. Incorrect codes
- 4. Missing intervals data
- 5. Overlapping intervals
- 6. Missing assay values
- 7. Negative or non numeric data handling
- 8. Switched collar easting and northing data

5.3. Geological Domains

As the exploration assay results have accumulated it appears that these can be regarded as distinct lithological domains where the exploration drilling work was completed. At this time,

4 separate geological domain lithology in Block D have been identified for constructing the geological model:

- 1. MUD; Soft material deposited on top LIM, SAP or MLS
- 2. LIM; Limonite
- 3. SAP; Saprolite
- 4. MLS; Molasse Conglomerate as source/bed rock of the nickel laterite deposit

Other geological domains such as DMT (dolomite) and FLS (other sedimentary rocks) are not modeled since they are outside the nickel laterite boundary.

Visual lithological description from field geologists has been checked using assay data to make better geological definition of the lithological domains intersected in the drilling. As a result, a generalized geochemical characteristic for each lithological domain has been defined as shown in Table 13. Each geological domain has been coded into the database and used for geological modelling.

Laterite Layers	Non Laterite	Fe	MgO	SiO ₂	CaO	Ni
	MUD	≥ 30%	≤ 5%	≥ 30%		<0.1%
LIM		≥ 30%	≤ 7%	≤ 20%		
SAP		8% > x < 30%	7% > x ≤ 20%	20% > x < 40%		
	MLS	≤ 8%	> 20%	≥ 40%		< 0.8%
	DMT				≥ 20%	<0.1%
	FLS	≤ 10%		≥ 30%		<0.1%

Table 13 Generalized geological domain based on chemistry data.

Figure 31 Shows the average lithological thickness at each domain area based on the drilling results.

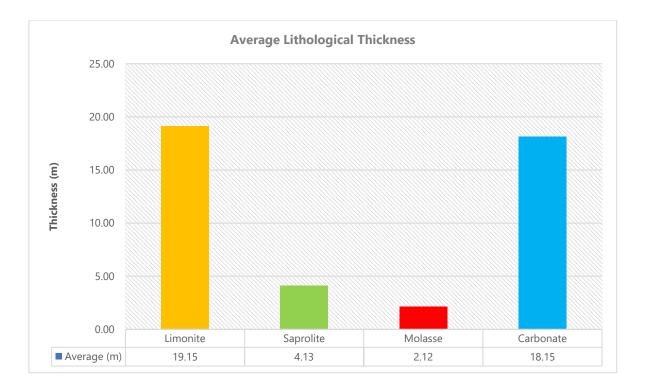


Figure 31 Average lithological thickness chart Block D

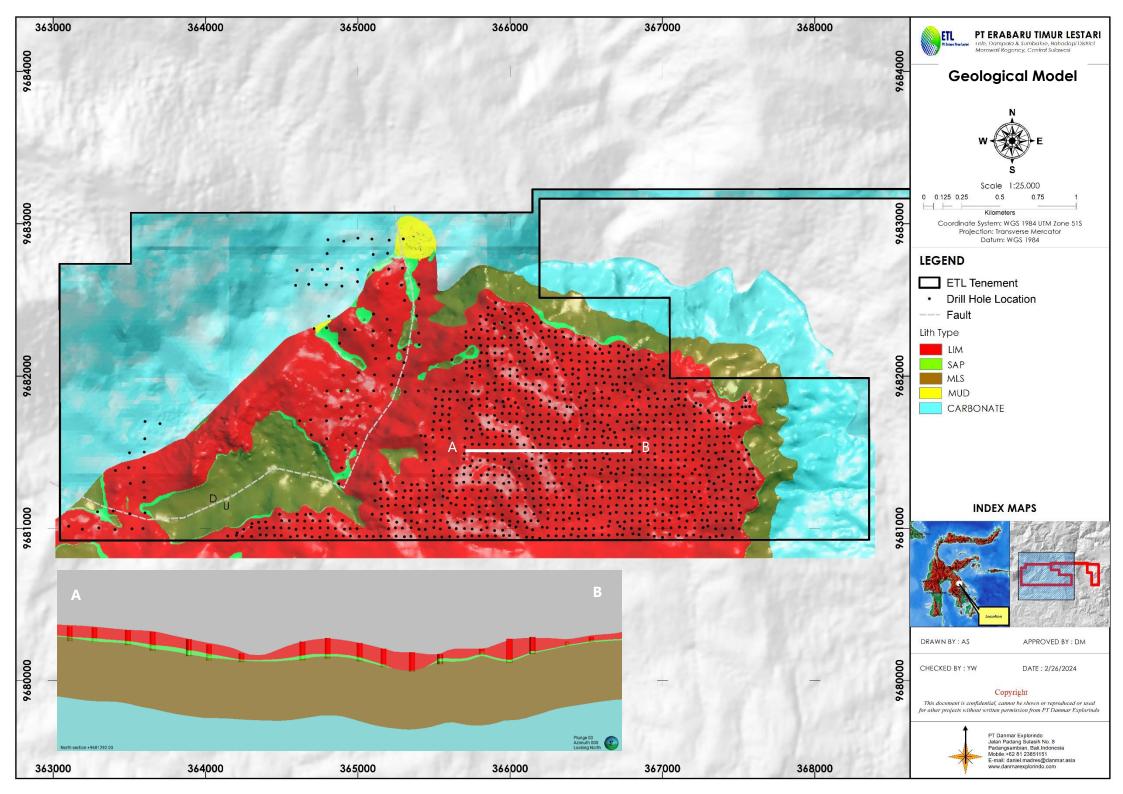
Based on the drilling and assay results the thickness of limonite appears to be relatively consistent around 19.22m. Saprolite appears also be relatively consistent at around 4.17m.

Complete descriptive statistics for each domain are summarized in Appendix 4.

6. MINERAL RESOURCE ESTIMATE

6.1. Software

Geological modelling, geostatistical study and Mineral Resource estimation were completed using Seequent Leapfrog Geo 2023.2.1 software.


6.2. Geological Modeling

Each lithology in the drill hole data has been coded into distinct geological layers, based on their chemical composition determined by the assay results. Each contact of the layer has been modelled in the 25 x 25meter grid surfaces and visually checked by easting and northing cross sections to ensure the surface fit the drill hole data. The topography surface was used to limit the limonite, saprolite and molasse conglomerate.

The cumulative thickness of the domain layers was compared to the original drill hole data to check the accuracy of the geological model. The cumulative thickness is summarized in the Table 14 below.

Lithology	Total Drill Hole Thickness (m)	Total Model Thickness (m)	% Matching Length
Limonite	25,077.32	24,939.56	99.45
Saprolite	4,618.42	4,612.80	99.88
Molasse Conglomerate	2,630.26	2,625.91	99.83

Table 14 Drillhole and geological model cumulative thickness comparison

6.3. Extrapolatory Data Analysis

The drill hole samples were composited in 1m lengths. The 1m compositing was selected because it represents the modal length of the samples taken during exploration and would preserve the detail information obtained in the samples. Several compositing strategies for sample length with less than 1m have been tested in the geological model by adding it to the previous interval or distribute it equally between previous and subsequent samples or ignoring it completely. The three compositing method show very little change in the coefficient of variation (CV), so that for the current geological model, sample length less than 1m are added to the previous interval composite to include all analyses in the geological model.

Parameter	Ni	Со	Fe	MgO	SiO2	Cr2O3
Mean	1.05	0.11	41.06	1.75	6.33	2.88
Standard deviation	0.30	0.05	5.42	1.55	6.94	0.57
Variance	0.09	0.00	29.43	2.40	48.18	0.32
Coefficient of variation	0.29	0.49	0.13	0.89	1.10	0.20
Maximum	3.49	0.89	52.05	23.49	59.83	6.16
Median	1.04	0.1	42.76	1.14	2.96	2.94
Minimum	0.08	0	5.02	0.01	0.01	0.01

Table 15 Composite statistics for Limonite (LIM)

Table 16 Composite statistics for Saprolite (SAP)

Parameter	Ni	Co	Fe	MgO	SiO2	Cr2O3
Mean	1.32	0.04	17.63	12.33	35.14	1.38
Standard deviation	0.57	0.02	6.25	5.76	7.16	0.49
Variance	0.32	0.00	39.09	33.22	51.29	0.24
Coefficient of variation	0.43	0.44	0.35	0.47	0.20	0.35
Maximum	7.41	0.25	40.61	39.1	77.16	3.91
Median	1.23	0.04	17.02	11.86	35.25	1.36
Minimum	0.1	0.01	4.78	0.11	11.48	0.01

Complete descriptive statistics for each element are summarized in Appendix 4.

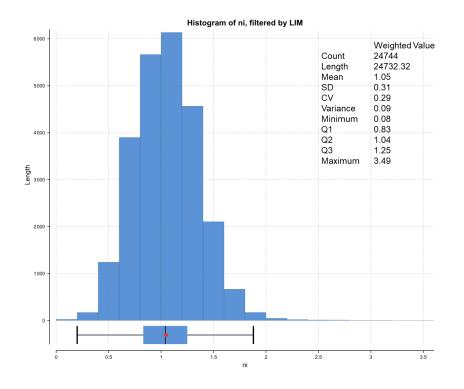


Figure 33 Histogram for Ni Limonite in Block D

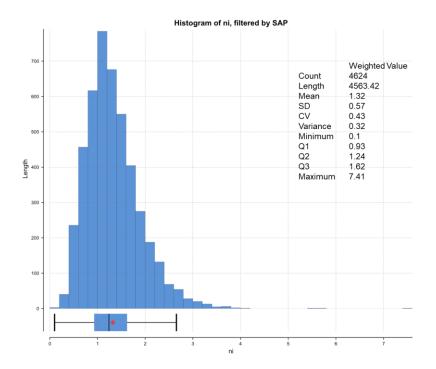


Figure 34 Histogram for Ni Saprolite in Block D

6.4. Variography

6.4.1. Variogram

The variograms for all elements were modelled using the spherical formula in the normalized type of data. A lag distance of 1m was used for the downhole variogram and 25m to 50m was used for horizontal pairing. During fitting the variogram, all data was transformed into normal score data to reduce the noise of the variogram and then transformed back again when exporting the variogram for grade estimation.

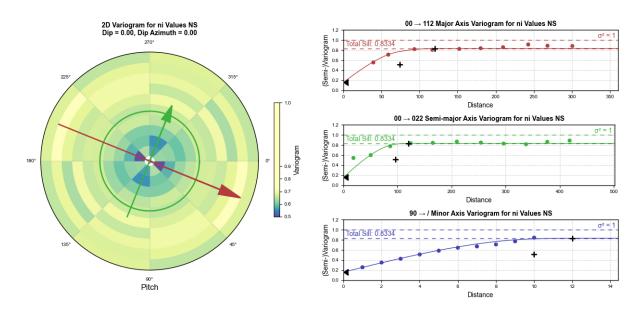


Figure 35 Example of variogram of Ni Saprolite in Block D

Complete variogram modelling for each element and domain are summarized in Appendix 4.

6.4.2. Kriging Neighbourhood Analysis (KNA)

The smoothing effect by Ordinary Kriging is the main source of conditional bias. To minimize the conditional bias, quantitative Kriging neighbourhood analysis (KNA) was performed to determine the optimum block size, discretization block, number of samples and search ellipsoid ranges on the selected variogram model. The Kriging efficiency, Kriging variance and conditional bias slope is used to measure the degree of over smoothing in the local grade.

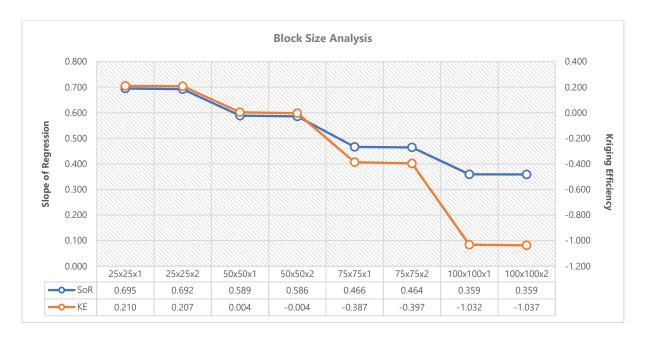


Figure 36 KNA for optimum block model size in Block D

Figure 37 KNA for optimum discretization block for saprolite in Block D

The results of the discretization block study show that the value of Kriging Variance has no significant difference, so that in the Resource estimation the discretization block chosen is 5x5x4 because it is commonly used in the Indonesian nickel industry.

Parameter	Limonite	Saprolite	
Block Size	25x25x1		
Discretization Block	5x5x4		
Max. Horizontal Search	80	80	
Max. Samples	30	30	
Max. Vertical Search	5	4	

Table 17 KNA Summary

Complete KNA results are summarized in Appendix 4.

6.5. Block Model

Three-dimensional block models were constructed for the ETL project to cover all the interpreted lithological domain layers. As suggested by KNA, a block model size of 25 x 25 x1m with no rotation has been selected for Block D, the block model size also will support the drill holes with less than 50m spacing.

The position of the block model centroid is placed as close as possible to the location of the drill hole collar. No sub-blocking was applied to the parent block to reduce the grade bias of the Resource estimation. The percentages of material in each block from the interpreted geological wireframes has not been applied in the block model.

The block model dimension and attributes, coded into the block models, including interpreted generic lithology, estimated grades and Kriging estimation attributes are as shown in Table 18 and Table 19 respectively.

Туре	Y	Х	Z	
Minimum Coordinates	9680837.833	363039.909	302.322	
Maximum Coordinates	9683087.833 367714.909		672.322	
User Block Size	25	25	1	
Min. Block Size	25	25	1	
Rotation	0	0	0	

	Table	18	Block model	dimensions
--	-------	----	-------------	------------

Attribute	Туре	Decimals	Background	Description
al2o3	Float	4	-999	OK interpolated grades for Aluminum Oxide (Al2O3%)
сао	Float	4	-999	OK interpolated grades for Calcium Oxide (CaO%)
со	Float	4	-999	OK interpolated grades for Cobalt (Co%)
cr2o3	Float	4	-999	OK interpolated grades for Chromium Oxide (Cr2O3%)
fe	Float	4	-999	OK interpolated grades for Iron (Fe%)
lithology	Character	-	UNDEF	
material	Character	-	UNDEF	OB, LGL, HGL, LGSO, MGSO, HGSO, WASTE
mgo	Float	4	-999	OK interpolated grades for Magnesium Oxide (MgO%)
mno	Float	4	-999	OK interpolated grades for Mangan Oxide (MnO%)
ni	Float	4	-999	Estimated Ni
ni_avgd	Float	4	-999	Average Distance
ni_dom	Character	-	UNDEF	Geological domain LIM, SAP, MLS
ni_est	Character	-	UNDEF	Krigging Pass; Pass 1, Pass 2, and Pass 3
ni_ke	Float	4	-999	Krigging Efficiency
ni_kv	Float	4	-999	Krigging Variance
ni_ndh	Float	4	-999	Number of drillhole
ni_ns	Float	4	-999	Number of Negatif Weight
ni_sor	Float	4	-999	Slope of Regression
res_class	Character	-	UNDEF	Measured, Indicated, Inffered, Undef
sg	Float	4	-999	Insitu lab density measurement (wet s.g)
sio2	Float	4	-999	OK interpolated grades for Silica Oxide (SiO2%)

Table 19 Block	model attrik	outes for all blocks
----------------	--------------	----------------------

6.6. Insitu Density and Moisture Content

As discussed in section 4.5 of this report the results of Insitu Density and Moisture Content measurements are considered be representative of the Density and Moisture instu at ETL, as they were taken from almost all drill holes. For this reason, these measurements have been used for this Resource estimate, to be as follows;

Table 20 Insity Dansit	ward Maisture Contant	analiad in this Descurse actionate	
Table 20 Insitu Densi	ly and moisture Content	applied in this Resource estimate	

Laterite Layers	Density (g/cm3)	Moisture Content (%)
Limonite	1.76	44.96
Saprolite	1.6	39.95

6.7. Grade Estimation

Ordinary Kriging grade estimate has been applied for all chemical elements. The number of samples, search radius and discretization block for each domain were taken from block size

analysis results. Several run tests (passes) have been applied to the grade estimate to cover all the laterite domains in the block model. The first search radius (pass 1) obtained from KNA and then multiplied by 2 for the subsequent passes.

Demonstra	Li	monite (N	li)	Sa	aprolite (N	li)
Parameter	Pass 1	Pass 2	Pass 3	Pass 1	Pass 2	Pass 3
Minimum Sample	5	3	1	5	3	1
Maximum Sample	30	30	30	30	30	30
Max. Search Radius	80	160	320	80	160	320
Max. Vertical Distance	5	10	20	4	8	16
Pitch		90			90	
Dip Azimuth		0			0	
Dip		0	0			
Major/Semi-major 1		0.595		0.771		
Major/Semi-major 2		1.000		1.000		
Major/Minor 1		2.500		7.400		
Major/Minor 2		8.800		10.000		
Nugget		0.086			0.161	
Structure 1		0.383			0.356	
Structure 2		0.397 0.317				
Range 1		25			74	
Range 2		88			120	
Block Discretization		5 X 5 X 4			5 X 5 X 4	

Table 21 Example of grade estimation nickel for limonite and saprolite

For details about grade estimation see Appendix 4.

In classic geostatistical estimation, a single constant orientation for search and variogram is applied across the geological domain. This type of estimation is considered not appropriate to be applied in the project area since the nickel laterite deposits are mostly flat and undulated. To overcome the problem, Leapfrog Edge's Variable Orientation (VO) was used to allow reorientation of the search and variogram to better match the local geometry (see Figure 35).

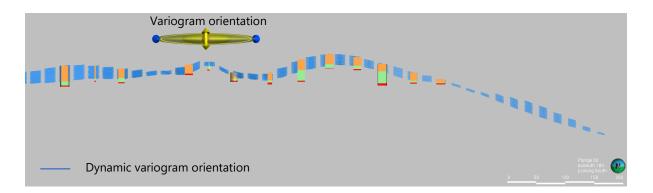


Figure 38 Example of variable orientation (Leapfrog) applied in limonite

6.8. Block Model Validation

The estimated block model was validated visually on screen as well as by the statistical means.

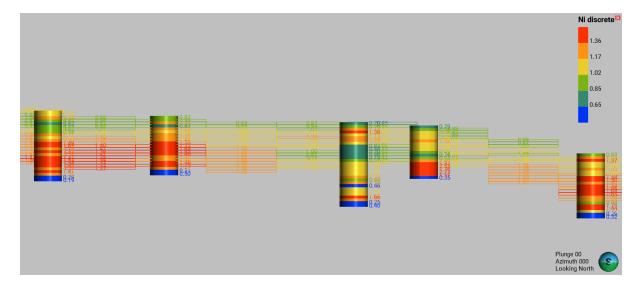


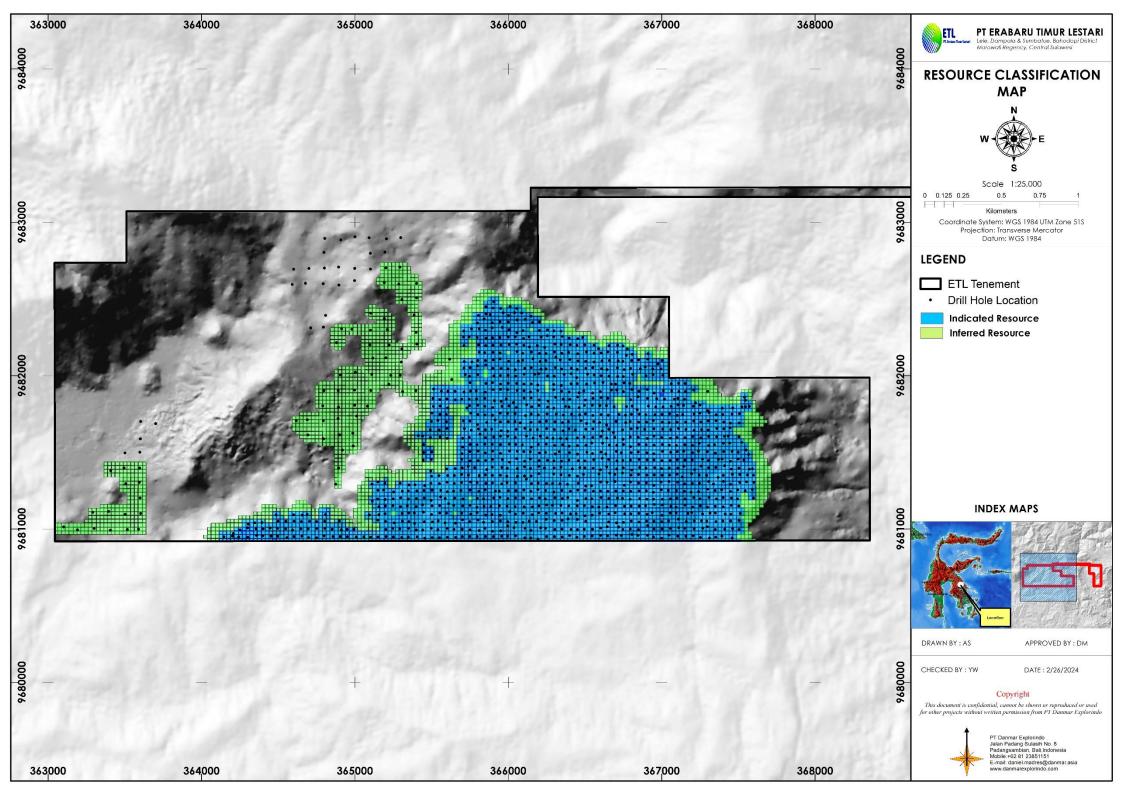
Figure 39 Example of block model validation for limonite using visual method

The block model was compared with drill hole sample data on cross sections to verify the geological interpretation and estimated grades. Swath plots were used to visualize the statistical mean and magnitude of error between composite samples and the estimated grades.

Figure 40 Block model validation using swath plot

For details about block model validation see Appendix 4.

6.9. Resource Classification


The Mineral Resource has been classified on the basis of drill hole spacing grid, grade continuity with geostatistical considerations such as Kriging variance, slope of regression and average influence from surrounding samples.

The vast majority of the deposit is drilled in a 50x50m grid although in the western part of the IUP, a 100x100m of drill hole spacing grid also has been drilled. At this time, the current drill hole spacing grid is considered to be too widely spaced to support a Measured Resource category.

The Kriging Variance, slope of regression and average distance to samples has been used to assess the confident level of estimation. Kriging variance less than 0.02 and slope of regression more than 0.90 has been considered as high level confidence. Medium level confidence has Kriging Variance between 0.02 and 0.05 and slope of regression between 0.45 and 0.90 which means coherent and spatially consistent with 50x50m drill spacing. Whereas low level confidence has Kriging Variance higher than 0.05 and slope of regression less than 0.45 which means coherent and spatially consistent with 100x100m drill spacing.

Kriging Variance	Slope of Regression	Average Distance to samples	Category
KV <= 0.02	SoR > 0.9	<= 25m	Measured
0.02 < KV <= 0.05	0.45 < SoR <= 0.9	25m < AvD < 55m	Indicated
KV > 0.05	SoR <= 0.45	55 >= AvD < 100m	Inferred

Table 22 Kriging properties to assess the Resource classification in ETL Project

6.10. Prospect for Economic Extraction

The ETL company management is currently targeting the sale of nickel ore to the PT Indonesia Morowali Industrial Park (IMIP) nickel smelter located 50km east of the project area. The requirement for HPAL is limonite whereas the requirement for RKEF smelters is saprolite. Based on these requirements, cut off grade (CoG) of 0.8% Ni for limonite and 0.8 Ni for saprolite have been applied in the Resource estimate. See Figure 39 and 40.

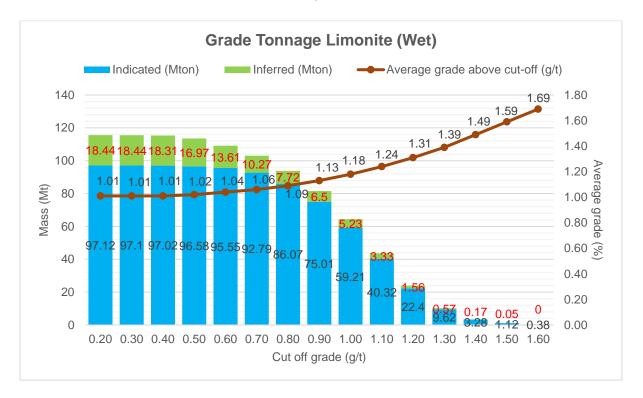


Figure 42 Grade tonnage of Limonite

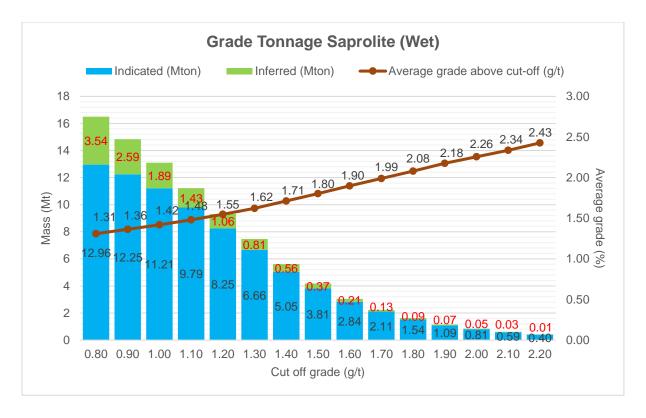


Figure 43 Grade tonnage of Saprolite

6.11. Statement of Mineral Resources

The Mineral Resource estimate for ETL project has been completed with data until the 18th December 2023. The numbers have been rounded to reflect the relative accuracy of the estimate.

Lithology	Mineral Resource	Ма	ISS	Ni	Co	Fe	MgO	SiO2	Cr2O3	Metal Content Ni
	Category	Wet Mt	Dry Mt	%	%	%	%	%	%	000' t
LIMONITE	Indicated	86	47	1.1	0.11	41.0	1.9	6.6	2.9	510
(Ni Cut off	Inferred	8	4	1.1	0.11	40.9	2.0	7.5	2.9	45
Grade 0.8%)	Sub-Total	94	51	1.1	0.11	41.0	1.9	6.7	2.9	555
SAPROLITE	Indicated	13	8	1.4	0.04	17.4	12.8	35.2	1.4	110
(Ni Cut off	Inferred	3	2	1.1	0.04	17.0	13.2	36.7	1.3	20
Grade 0.8%)	Sub-Total	16	10	1.3	0.04	17.3	12.9	35.5	1.4	130
	Indicated	99	55	1.1	0.10	37.9	3.3	10.3	2.7	620
Total ETL Project	Inferred	11	6	1.1	0.09	33.4	5.5	16.7	2.4	65
110,000	Project Total	110	61	1.1	0.10	37.4	3.5	11.0	2.7	685

Table 23 Nickel La	terite Resource
--------------------	-----------------

6.12. Risk and Opportunities

Systematic grid drilling spaced at 50m and 100m and the supportive data provided by UltraGPR surveys and detailed core analyses has greatly enhanced the confidence in the geological interpretation and resulting geological model at ETL, Block D.

The database has been validated and rechecked for errors. Drill holes collar coordinates used in the geological model, have been surveyed with high accuracy giving relatively high confidence to the current Nickel Resource estimate.

The final geological models for Limonite (LIM), Saprolite (SAP) and Molasse Conglomerate (MLS) have been interpreted separately using lithological logs and analysis results so that all blocks in the geological model are correctly coded according to their occurrence in the laterite profile. For this reason, it is considered unlikely that any misallocation of lithology will have significant influence on the Nickel Resource.

Relative confidence in the laboratory analysis results is supported by proper quality assurance and quality control protocols including, sample blanks, sample standards, duplicate samples and interlaboratory checks samples.

The planned haul road to IMIP provides a direct road transportation opportunity for ore from ETL to the market. This greatly enhances the economic potential of the ETL nickel project area and potential for production of saprolite and limonite ore for processing at IMIP.

7. EXPLORATION TARGET

Mapping carried out by PT Hengjaya Nickel Utama and PT Mandiri Jaya Nickel in 2010 identified nickel laterite in Blocks D and E. Block E has not yet been drilled. Based on recent mapping data, approximatly 50ha of area may provide an Exploration Target for additional nickel laterite. Figure 41 shows the location identified as laterite in the historic data.

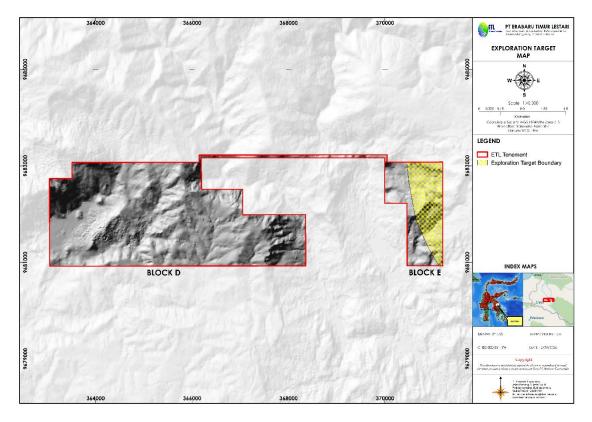


Figure 44 Exploration target location

Table 24 shows an estimated range of potential additional nickel laterite, based on the recent mapping results in the Block E area. Although it should be noted that there is insufficient data at this time to estimate a Nickel Resource and there is no guarantee further exploration will result in a Nickel Resource.

Layer	Target Area (Ha)	Thickness Assumption Min (m) Max (m)					Density	
	Alea (Ila)			Min (Mt)	Max (Mt)			
Limonite	50	1	5	1	4	1.76		
Saprolite	50	0.5	5	0	4	1.6		
Total	50	1	5	1	8			

Table	24	ETL	Exploration	Target
rabic	<u> </u>		Exproration	larget

REFERENCES

BAILLIE AND DECKER 2022, ENIGMATIC SULAWESI: THE TECTONIC COLLAGE, BERITA SEDIMENTOLOGY V48(1)

FRANKE, RESOURCE DEFINITION COST REDUCTION THROUGH HIGH RESOLUTION GROUND PENETRATING RADAR

JIS M-8109-1996 METHOD FOR SAMPLING AND DETERMINATION OF MOISTURE CONTENT OF GARNIERITE ORE

LIPTON AND HORTON, MEASUREMENT OF BULK DENSITY FOR RESOURCE ESTIMATION GUIDELINES AND QUALITY CONTROL

SILVER AND McCAFFERY 1981, OPHIOLITE EMPLACEMENT BY COLLISION BETWEEN THE SULA PLATFORM AND THE SULAWESI ISLAND ARC, INDONESIA

SIMANDJUNTAK T.O., RUSTAMA E., SUPANDJONO J.B., KOSWARA A,, 1993, GEOLOGICAL MAP OF BUNGKU QUADRANGLE, SULAWESI

SURATMAN (INCO) GEOLOGY OF NICKEL LATERITE WEATHERING DEPOSIT IN THE SOUTHEAST ARM OF SULAWESI

APPENDIX

- 1. TABLE 1 OF THE JORC CODE
- 2. PT ERABARU TIMUR LESTARI LEGAL DOCUMENTATION
- 3. PT HENGJAYA MINERALINDO LABORATORY QAQC REPORT
- 4. ETL BLOCK MODEL DOCUMENTATION
- 5. RESUME OF COMPETENT PERSONS AND CONTRIBUTING AUTHORS
 - i. DANIEL MADRE
 - ii. TOBIAS MAYA
 - iii. YORRIS WIBRIANA
 - iv. HARMAN ADHITTYO

APPENDIX 1

PT ERABARU TIMUR LESTARI TABLE 1 OF THE JORC CODE

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 HQ core samples taken in 1m intervals and all core photographed and filed as a reference All drilling to date is on a systematic 50 X 50m grid over GPR targets for this reason the estimate has been classified as an Indicated Resource at this time. Future infill drilling will be required to raise confidence to estimate Indicated and Measured Resources status. All core photographed and described by well site geologists. Sample preparation and moisture determination follow the Japanese Industrial Standard (JIS), Method for Sampling and the Determination of Moisture Content of Garnieritic Nickel Ore, 1996 Full core 1m sample intervals were analysed at PT Hengjaya Mineralindo lab. High confidence in the laboratory analyses results are supported by rigorous quality assurance and quality control protocols including; sample blanks, sample standards, duplicate samples and interlaboratory checking. More than 32,900 samples were analysed to support the Resource estimate.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 HQ wireline triple tube coring in 1m runs to ensure accurate measurement of core expansion (swelling) and recovery Vertical drilling, core orientation not required
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Full coring used and core recovery data collected for all runs (1,337 holes with total cumulative meters 32,798), core recoveries documented by photography Minimum 95% recovery maintained for all holes If 3 consecutive runs are less than 95% the hole is re-drilled Some lower recoveries in silica boxwork zones were tolerated due to geological conditions but overall drilling conditions are relatively good and recoveries remain consistently high

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 100% of laterite layers drilled have been logged by geologists and photographed in the drilling to date Logging includes core recoveries and core swelling measurements Every meter of the core is logged using standard format and sampled progressively for lab analysis
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	blanks, coarse replicates and 200# pulp sieve tests, whilst reducing sample particle size and volume. Interlaboratory checks were carried
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Representivity at sub-sampling stages at sample prep lab maintained by following JIS M-8109-1996 SOP to maintain accuracy and precision at all sub-sampling stages eg coarse

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Geological logs of the drill core are reconciled against assay results to verify lithology for any misallocation. All geological data are stored and validated in PostgreSQL database software before exported to the Leapfrog Geo 2023 geological model software. Several checks have been carried out, including: Duplicate points error Duplicate hole id error Collar and survey depth error Lithological depth exceeds collar depth error Overlapping segments error Invalid assay value handling
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All recent drilling located by ground RTK GPS survey methods UTM (Universal Traverse Mercator) Projection; WGS 1984 UTM Zone 51S grid is being applied in the Resource estimation LiDAR topographic surface was used The distinction between drill hole collar elevation and LiDAR topography surface in general is less than 0.5m which sufficient for mineral resource estimation
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Ultra GPR targets and geological surface mapping were used for Exploration Targets recognition only 50 X 50m grid drilling was drilled in the center and southern part of Block D, while 100 x 100 m grid drilling was drilled in the west part of Block D. The drill hole samples were composited in 1m lengths. The 1m compositing was selected because it represents the modal length of the samples taken during exploration and would preserve the detail information obtained in the samples. Several compositing strategies for sample length with less than 1m have been tested in the geological model by adding it to the previous interval or distribute it equally between previous and subsequent samples or ignoring it completely. The three compositing method show very little change in the coefficient of variation (CV), so that for the current geological model, sample length less than 1m are added to the previous interval composite to include all analyses in the geological model.
Orientation of data in relation to	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 Vertical drilling is appropriate for nickel laterite as the laterite is relatively horizontal, so the drilling intersects a true thickness of each lithological horizon

Criteria	JORC Code explanation	Commentary
geological structure	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 No bias is considered to be introduced as a result of the drilling orientation
Sample security	The measures taken to ensure sample security.	 Samples left in the field are properly stored, covered and guarded by night security Sample stores are locked at night and continuously guarded
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Comparisons between internal lab results and 2 external labs showed close correlation between results suggesting relative accuracy acceptable for use in Resource estimation

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Mining rights are held under an Operation and Production Mining Business Permit (IUPOP), Area Code 540.3/SK.0017/DESDM/VI/2011. The area covers 1,159Ha and gives ETL the right to mine nickel and its associated minerals. The IUPOP was granted by the Regent of Morowali in 2011 and is valid until June 2031.The Operation Production IUP may be renewed twice, each for a period of 10 years. Land has been compensated, no Forestry restrictions in the main Resource area
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• The exploration work has been carried out over various stages since 2010 by Rio Tinto, Sherrit and other groups. Historic data records from this work are incomplete and cannot be used for Resource estimation
Geology	Deposit type, geological setting and style of mineralisation.	 Laterization of molasse conglomerate containing of ophiolite rocks, formed in a tropical climate environment through a process of surface leaching over time, two distinct enriched zones of Limonite clays and Saprolite clays & weathered rocks are typically found in this type of geological setting where concentrations of Ni, Co, Fe and other

Criteria	JORC Code explanation	Commentary
		associated metals are characteristic and diagnostic
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 The drill database at ETL contains 1,337 holes with a cumulative total depth of 32,738m. Assays total 32,933 samples. It is not practical or relevant to include these individual results to understand this report because; Ni laterite deposits are at relatively low concentrations (1.13% Ni average) and the Resource can only be represented by a compilation of large numbers of points of observations. For this reason, the report has described the deposit using maps of borehole locations, Ni grade isopach and thickness isopach, descriptive statistical analyses of assay results, variograms and swath plots of the data to understand the data and check its validity and variability
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Only assay data from the validated database were extracted for use in the compositing process. Composite lengths of 1m were used, which correlates with the majority of the sample length records. Composites were split into 4 lithologies namely; mud, limonite, saprolite and molasse conglomerate bedrock Cutting of high grades was done as required by looking at the data distribution, cumulative histogram & log probability plots. Metal equivalents for Nickel content were shown in the Resource table with ore grades as wet and dry tons
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Vertical drilling provides good representation of the deposit geometry and depth and reasonably assumed to represent true thickness, 1m core and assay sampling procedures were sufficient to provide accurate wellsite observations and reconciliation of logs Mineralization is basically horizontally orientated Total depths of drilling were guided by the interpretation of the Ultra GPR surfaces to target at least 2-3m of bedrock was intersected at the end of each hole
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Diagrams, maps, sections are all included in the body of the report

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All reliable(validated) data included without prejudice Thickness established through drilling intercepts supported with Ground Penetrating Radar (UltraGPR) geophysics, reliable assays and exposed lithological layers observed in outcrops
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 86.6km of ground penetrating radar (UltraGPR) survey lines were completed, providing excellent section profiles views of limonite, saprolite and bedrock layers, global volumes and thickness grids were used for exploration planning and understanding of the weathering patterns of the nickel laterites to best optimize the drilling patterns by domains
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Plans for infill drilling in the Indicated Resource area Exploration Target at ETL have already been surveyed using Ultra GPR and are planned to be drilled to delineate a Resource area if successful Exploration Target areas map is provided

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 The collar survey, assay and geology tables were validated to correct data error issues such as: missing or duplicate collar records overlapping intervals in the assay records collar elevation errors compared to current LiDAR topography downhole accuracy issues, total depths, from/to intervals core recoveries and swelling lithology description from wellsite geologists reconciliation of lithology with laboratory assay results moisture records from core lab analysis downhole statistical analysis All data was validated and included in the Resource estimate

Criteria	JORC Code explanation	Commentary
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	• Two site visits by the CP (Daniel Madre) were completed. The objective was to review exploration progress; including drilling, and sampling procedures, review sample handling, preparation and analyses. Site inspection of molasse conglomerate bedrock as the source of the nickel laterite
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Due to a systematic drill program on the same grid as more than 86.6km of UltraGPR survey, allows for a relatively high confidence in geological interpretation of the ETL nickel laterite deposit. Historical records for surface mapping, combined with the more recent UltraGPR survey traverse on 200m spaced grids over 100% of the Resource area provides good correlation and understanding if the laterization distribution, bulk volumes and mineralization. This is considered to be sufficient for estimation of the Mineral Resource All data included into the geological interpretation was validated to be free of errors and downhole wellsite logging reconciled with assay results into composited zones of Mud, Limonite, Saprolite & Molasse Conglomerate lithology zones Use of Ground Penetrating Radar (UltraGPR) interpretative data source was used in combination with points of observations from the validated database in extrapolating between drill holes Geological structure and bedrock topology, which are often displayed on Ultra-GPR interpretations, helped to target thick, high grade laterite areas
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 Resource dimensions are determined by the drilling area at this stage which are approximately 2,000m in length, 1,500m in width and covering 564ha. Laterization thickness for up to 40m to bedrock in some places Limonite thickness average in the Resource area is approximately 18m and saprolite thickness is averaging around 6m.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine 	 Geological modeling and Mineral Resource estimate were completed using Leapfrog Geo 2023.2. The domain modeling in the software use implicit modelling with FastRBF, a mathematical algorithm developed from radial basis functions. The surface resolution for each domain model is 25 x 25m (half distance of the 50x50m drill hole spacing) with adaptive interpolation ability. Kriging Neighborhood Analysis (KNA) has been done to minimize the smoothing effect by Ordinary kriging. Quantitative KNA was

Criteria	JORC Code explanation	Commentary
	 production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 performed to determine the optimum block size, discretization block, number of samples and search ellipsoid range for each element. Three-dimensional block models were constructed for the ETL project to cover all the interpreted lithological domain layers. As suggested by KNA, a block model size of 25 x 25 x1m with no rotation has been selected for Block D, the block model size also will support the drill holes with less than 50m spacing. The block model was compared with drill hole sample data on cross sections to verify the geological interpretation and estimated grades. Swath plots were used to visualize the statistical mean and magnitude of error between composite samples and the estimated grades. Ordinary Kriging grade estimate has been applied for all geochemical elements. The number of samples, search radius and discretization block for each domain were taken from block size analysis results. Several run tests (passes) have been applied to the grade estimate to cover all the laterite domains in the block model. The first search radius (pass 1) obtained from KNA and then multiplied by 2 for the subsequent passes. Leapfrog Edge's Variable Orientation (VO) was used to allow reorientation of the search and variogram to better match the undulated laterite geometry A comparison against previous Mineral Resource could not be made as this is the first formal nickel Resource estimate in this area. Deleterious elements such as MgO and SiO2 were reported. Acid drainage of the Mineral Resource was not considered in the model at this time as there has been no mining activity yet in the project area. Pits are relatively shallow and plan to be backfilled and rehabilitated progressively
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	 Moisture measurements were performed every 1m drill core sample In areas where Moisture content measurements were not available from core lab analysis the domain default weighted average was applied to the corresponding composite zone Mineral Resource was reported on a wet basis
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 The ETL company management is currently targeting the sale of nickel ore to the PT Indonesia Morowali Industrial Park (IMIP) nickel smelter located 50km east of the project area. The requirement for

Criteria	JORC Code explanation	Commentary
		 HPAL smelters is assumed to be 1% of Ni from limonite whereas the requirement for RKEF smelters is assumed to be 1.6% of Ni from saprolite. Based on these requirements, cut off grade (CoG) of 0.8% Ni for limonite and 1.3% Ni for saprolite have been applied in the Resource estimate Based on statistical analysis of the domain databases & ongoing ore mining operations at nearby mining projects a 0.80% cut off for nickel was applied to both Limonite and Saprolite to best represent the global Mineral Resource estimate for representation of eventual economic extraction. A range of Ni cut-off grades up to 2.0%, split by laterite type to better understand the other elements (Co, Fe, MgO, SiO2, Al2O3, CaO, Density & Moisture) in relation to Nickel (Ni), was also supplied
Mining factors or assumptions	• Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 no mining or modifying factors were applied to the Mineral Resource statement that would result in a conversion to Ore Reserve at this time. assumptions for open cut mining operation similar to current production at the Hengjaya Project nearby and supply agreements with nearby IMIP smelter provide sufficient evidence for determination of reasonable prospects of eventual economic extraction of the MJN Mineral Resource proximity to the smelter and the prospect of direct haul road access indicates excellent prospect for eventual economic extraction
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Metallurgical factors and assumption based on ongoing supply requirement to the RNI & HNI smelters (majority owned by NIC) at the IMIP facility were considered when selecting the cutoff ranges for the Mineral Resource and by product splits between Limonite & Saprolite
Environmen- tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of 	 Environmental Impact studies will be completed as part of the mining operation permitting process,

Criteria	JORC Code explanation	Commentary
	these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Density measured on samples from every hole from each of the 4 layers. This represents the insitu density of the laterite
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The Mineral Resource has been classified on the basis of drill hole spacing grid, grade continuity with geostatistical considerations such as Kriging variance, slope of regression and average influence from surrounding samples. The Kriging Variance, slope of regression and average distance to samples has been used to assess the confident level of estimation. Kriging variance less than 0.02 and slope of regression more than 0.90 has been considered as high level confidence. Medium level confidence has Kriging Variance between 0.02 and 0.05 and slope of regression between 0.45 and 0.90 which means coherent and spatially consistent with 50x50m drill spacing. Whereas low level confidence has Kriging Variance higher than 0.05 and slope of regression less than 0.45 which means coherent and spatially consistent with 100x100m drill spacing.
		Kriging Variance Slope of Regression Average Distance to samples Category
		KV <= 0.02 SOR > 0.9 <= 25m Measured 0.02 < KV <= 0.05
		hole spacing grid also has been drilled. At this time, the current

Criteria	JORC Code explanation	Commentary
		 drill hole spacing grid is considered not sufficient to support Measured Resource category. Determination of the Resource classes, at this stage, was applied to the Mineral Resource with a digitized polygon boundary based on the spatial continuity of each geological domain around a regular spaced drilling grid 50m from included points of observation in the final validated database. Also taken into account was the Ultra GPR grid lines between the drilling locations increasing confidence in interpretation of the laterization contact surface between the points of observation in the model. Resources were classified as Indicated at this time as drill spacing was all at 50m intervals. INDICATED - Areas of 50m of drilling spacing on a continuous grid pattern, where significant influence from Pass 1, 2 and 3 dominate the search ellipsoids, with 50m extrapolation from the last line of drilling. Another factor in selection of resource polygon limits used for the Mineral Resource was a review of the geostatistical inputs and the weighting on each category. This was done by comparing the influence of each pass within the polygon boundaries. The results show that 96% of the blocks in Inferred class are interpolated by Pass 1 & 2. These results give sufficient confidence in the polygon strategy respectively.
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	 No formal audit was carried out on the geological model at this time. The Resource numbers were compared against estimates made by the ETL team and our own internal manual estimate, which showed similar volumes of limonite and saprolite giving confidence that the Resource estimate is within an acceptable range of accuracy.
Discussion of relative accuracy/ confidence	• Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative	the Mineral Resource estimate is based on a systematic drill grid of 50X50m. The resource classification is mostly Indicated at this time based on this spacing of points of observation. According to the

Criteria	JORC Code explanation	Commentary
	 discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 Indicated Mineral Resource stated in this report It is likely with further infill and exploration drilling in all domains the Mineral Resources estimated in this report will increase Long term supply contracts to refining facilities already in operation nearby significantly increase the potential for eventual economic extraction of the ETL nickel laterite Mineral Resource

Section 4 Estimation and Reporting of Ore Reserves (Not Required)

Criteria	JORC Code explanation	Commentary
Mineral Resource estimate for conversion to Ore Reserves	 Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve. Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves. 	Insert your commentary here
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	•
Study status	 The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves. The Code requires that a study to at least Pre-Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered. 	•
Cut-off parameters	• The basis of the cut-off grade(s) or quality parameters applied.	•
Mining factors or assumptions	 The method and assumptions used as reported in the Pre-Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by preliminary or detailed design). The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc. 	•

(Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section.)

Criteria	JORC Code explanation	Commentary
	 The assumptions made regarding geotechnical parameters (eg pit slopes, stope sizes, etc), grade control and pre-production drilling. The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate). The mining dilution factors used. The mining recovery factors used. Any minimum mining widths used. The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion. The infrastructure requirements of the selected mining methods. 	
Metallurgical factors or assumptions	 The metallurgical process proposed and the appropriateness of that process to the style of mineralisation. Whether the metallurgical process is well-tested technology or novel in nature. The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied. Any assumptions or allowances made for deleterious elements. The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the orebody as a whole. For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications? 	•
Environmen- tal	• The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported.	•
Infrastructure	• The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed.	•
Costs	 The derivation of, or assumptions made, regarding projected capital costs in the study. The methodology used to estimate operating costs. Allowances made for the content of deleterious elements. The source of exchange rates used in the study. 	•

Criteria	JORC Code explanation	Commentary
	 Derivation of transportation charges. The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc. The allowances made for royalties payable, both Government and private. 	
Revenue factors	 The derivation of, or assumptions made regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc. The derivation of assumptions made of metal or commodity price(s), 	•
	for the principal metals, minerals and co-products.	
Market assessment	 The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future. 	•
	 A customer and competitor analysis along with the identification of likely market windows for the product. 	
	 Price and volume forecasts and the basis for these forecasts. For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract. 	
Economic	 The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc. NPV ranges and sensitivity to variations in the significant assumptions and inputs. 	•
Social	The status of agreements with key stakeholders and matters leading to social licence to operate.	•
Other	 To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: Any identified material naturally occurring risks. The status of material legal agreements and marketing arrangements. The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent. 	•

Criteria	JORC Code explanation	Commentary
Classification	 The basis for the classification of the Ore Reserves into varying confidence categories. Whether the result appropriately reflects the Competent Person's view of the deposit. The proportion of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any). 	•
Audits or reviews	The results of any audits or reviews of Ore Reserve estimates.	•
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage. It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	•

APPENDIX 2

PT ERABARU TIMUR LESTARI LEGAL DOCUMENTATION

BUPATI MOROWALI

Komplex Perkantoran Bumi Fonuasingko Telp. (0411) 402355, 402356 Fax. (0411) 402356 BUNGKU

KEPUTUSAN BUPATI MOROWALI NOMOR: 540.3 / SK OIF / DESDM / VI / 2011

T E N T A N G PERSETUJUAN PENINGKATAN IZIN USAHA PERTAMBANGAN EKSPLORASI MENJADI IZIN USAHA PERTAMBANGAN OPERASI PRODUKSI KEPADA PT. ERABARU TIMUR LESTARI

BUPATI MOROWALI

Membaca

Menimbang

- : Surat Direktur PT. ERABARU TIMUR LESTARI Nomor : 12/ETL/VI/2011 Tanggal 19 Juni 2011 perihal Permohonan Peningkatan Izin Usaha Pertambangan Eksplorasi menjadi Izin Usaha Pertambangan (IUP) Operasi Produksi;
 - : a. bahwa berdasarkan hasil evaluasi kegiatan IUP Pertambangan Eksplorasi PT. ERABARU TIMUR LESTARI telah memenuhi syarat untuk diberikan persetujuan peningkatan IUP Eksplorasi menjadi IUP Operasi Produksi;
 - b. Keputusan Bupati Morowali Nomor : 660.1/73.B/KLH/VI/2011 tanggal 14 Juni 2011 tentang Kelayakan Lingkungan Kegiatan Penambangan Bijih Nikel di Desa Lele, Dampala dan Siumbatu Kecamatan Bahodopi Kabupaten Morowali Provinsi Sulawesi Tengah kepada PT. ERABARU TIMUR LESTARI.
- Mengingat
- Undang-Undang Nomor 13 Tahun 2000 tentang Ketenagakerjaan (Lembaran Negara RI Tahun 2000 Nomor 39, Tambahan Lembaran Negara RI Nomor 33817);
- Undang Undang Nomor 32 Tahun 2004 tentang Pemerintahan Daerah (Lembaran Negara RI Tahun 2004 Nomor 125, Tambahan Lembaran Negara RI Nomor 4437) sebagaimana telah diubah dengan Undang-Undang Nomor 8 Tahun 2005 tentang Penetapan Peraturan Pemerintah Pengganti Undang-Undang Nomor 3 Tahun 2005 tentang Perubahan atas Undang-Undang Nomor 32 Tahun 2004 tentang Pemerintahan Daerah (Lembaran Negara RI Tahun 2005 Nomor 108, Tambahan Lembaran Negara RI Nomor 4548);
- Undang-Undang Nomor 25 Tahun 2007 tentang Penanaman Modal (Lembaran Negara RI Tahun 2007 Nomor 67, Tambahan Lembaran Negara RI Nomor 4724);
- Undang-Undang Nomor 26 Tahun 2007 tentang Penataan Ruang (Lembaran Negara RI Tahun 2007 Nomor 68, Tambahan Lembaran Negara RI Nomor 4725);
- Undang-Undang Nomor 20 Tahun 2008 tentang Usaha Milik Mikro, Kecil dan Menengah (Lembaran Negera RI Tahun 2008 Nomor 93, Tambahan Lembaran Negara RI Nomor 4866);
- Undang-Undang Nomor 4 Tahun 2009 tentang Pertambangan Mineral dan Batubara (Lembaran Negara RI Tahun 2009 Nomor 4, Tambahan Lembaran Negara RI Nomor 4959);

- 7. Undang-Undang Nomor 28 Tahun 2009 tentang Pajak Daerah dan Retribusi Daerah (Lembaran Negara RI Nomor 5049);
- Undang-Undang Nomor 32 Tahun 2009 tentang Perlindungan dan Pengelolaan Lingkungan Hidup (Lembaran Negara RI Tahun 2009 Nomor 140, Tambahan Lembaran Negara RI Nomor 5059);
- Peraturan Pemerintah Nomor 27 Tahun 1999 tentang Analisis Mengenai Dampak Lingkungan Hidup (Lembaran Negara RI Tahun 1999 Nomor 59, Tambahan Lembaran Negara RI Nomor 3838);
- Peraturan Pemerintah Nomor 38 Tahun 2007 tentang Pembagian Urusan antara Pemerintah Pusat, Pemerintahan Daerah Provinsi, Pemerintahan Daerah Kabupaten/Kota (Lembaran Negara RI Tahun 2007 Nomor 82, Tambahan Lembaran Negara RI Nomor 4737);
- Peraturan Pemerintah Nomor 26 Tahun 2008 tentang Rencana Tata Ruang Wilayah Nasional (Lembaran Negara RI Tahun 2008 Nomor 48, Tambahan Lembaran Negara RI Nomor 4833);
- Peraturan Pemerintah Nomor 22 Tahun 2010 tentang Wilayah Pertambangan (Lembaran Negara RI Tahun 2010 Nomor 28, Tambahan Lembaran Negara RI Nomor 5110);
- Peraturan Pemerintah Nomor 23 Tahun 2010 tentang Pelaksanaan Kegiatan Usaha Pertambangan Mineral dan Batubara (Lembaran Negara RI Tahun 2010 Nomor 29, Tambahan Lembaran Negara RI Nomor 5111);
- Peraturan Pemerintah Nomor 55 Tahun 2010 tentang Pembinaan dan Pengawasan Penyelenggaraan Pengelolaan Usaha Pertambangan Mineral dan Batubara (Lembaran Negara RI Tahun 2010 Nomor 85, Tambahan Lembaran Negara RI Nomor 5142);
- 15. Peranturan Menteri Energi dan Sumber Daya Mineral Nomor 28 Tahun 2009 tentang Penyelenggaraan Usaha Jasa dan Pertambangan Mineral dan Batubara (Berita Negara RI Tahun 2009 Nomor 341);
- Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 34 Tahun 2009 tentang Pengutamaan Pemasokan Kebutuhan Mineral dan Batubara dalam Negeri (Berita Negara RI Tahun 2009 Nomor 546);
- Peraturan Daerah Kabupaten Morowali Nomor 20 Tahun 2003 tentang Penyelenggaraan Pengelolaan Usaha Pertambangan Umum (Lembaran Daerah Tahun 2003 Nomor 41);
- Keputusan Bupati Morowali Nomor : 540.2/SK.017/DESDM/III/2009 tanggal
 Maret 2009 tentang Persetujuan Izin Usaha Pertambangan Eksplorasi Kepada PT. ERABARU TIMUR LESTARI

TENTANG

PERSETUJUAN

MOROWALI

IUP OPERASI PRODUKSI KEPADA PT. ERABARU TIMUR LESTARI

PENINGKATAN IZIN USAHA PERTAMBANGAN EKSPLORASI MENJADI

MEMUTUSKAN:

BUPATI

Menetapkan

KEPUTUSAN

KESATU

: Memberikan Izin Usaha Pertambangan Operasi Produksi kepada :

Nama Perusahaan Nama Direktur	: PT. ERABARU TIMUR LESTARI : MARTHEN HENTIANA
Nilai Saham Pemegang Saham	: RP. 750.000.000,-
 Nama Nilai saham Pekerjaan Alamat 	 MARTHEN HENTIANA Rp. 450.000.000,- Swasta Taman Anggrek Tower RT.012 RW.001 Kel. Tanjung Duren Sawit Kec. Grogol Petamburan Jakarta Barat
Kewarganegaraan	: Indonesia

2. Nama	: MARTIN UNSULANGI HENG
Nilai saham	: Rp. 262.500.000,-
Pekerjaan Alamat	: Swasta
Aldmat	: Jl. Albasia I Blok F No. 21 RT.018 RW.004 Kel.
	Kedoya Selatan Kec. Kebon Jeruk – Jakarta Barat
	Dara
Kewarganegaraan	: Indonesia
3. Nama	: ANTONIUS KAMARGA
Nilai saham	: Rp. 37.500.000,-
Pekerjaan	: Swasta
Alamat	: Jl. Pelepah Hijau IV TT 1 No. 1 RT.012
	RW.001 Kel. Gading Timur Kec. Gading -
	Jakarta Utara
Kewarganegaraan	: Indonesia
Rewarganegaraan	indonesia
Alamat Perusahaan	: Taman Anggrek Tower RT.012 RW.001
	Kel. Tanjung Duren Sawit Kec. Grogol
	Petamburan – Jakarta Barat
TF	
Komoditas	: Nikel DMP
Lokasi penambangan	
Desa	: Lele, Dampala dan Siumbatu
Kecamatan	: Bahodopi
Kabupaten	: Morowali
Propinsi	: Sulawesi Tengah
Kode wilayah	: MW316
Luas	: 1.159 Ha
Peta dan daftar koordinat	WIUP yang diterbitkan oleh Bupati Morowali
sebagaimana tercantum dala	m Lampiran I dan Lampiran II Keputusan ini.
Lokasi Pengolahan dan Pen	, , , , , , , , , , , , , , , , , , , ,
Pengangkutan dan Penjuala Jangka waktu berlaku IUP	n : Desa Lele, Dampala dan Siumbatu : 20 Tahun
Jangka waktu Tahap Kegiat	
a. Konstruksi selama 3 Tah	
b. Produksi selama 17 Tahu	
: Pemegang IUP Operasi Pro	duksi mempunyai hak untuk melakukan kegiatan
konstruksi, produksi, peng	angkutan dan penjualan serta pengolahan dan
pemurnian dalam WIUP	untuk jangka waktu 20 Tahun dan dan dapat
diperpanjang 2 (dua) kali n	nasing-masing 10 tahun. Terhitung mulai tanggal
dalam WIIIP tardanat Kan	ni sampai dengan tanggal 27 Juni 2031 apabila wasan Hutan (Hutan Lindung, Hutan Produksi
Terbatas, Hutan Produks	i Tetap dan Hutan Produksi yang dapat di
Konversi dan areal Izin Us	aha Pengelolaan Hasil Hutan Kayu (IUPHHK),
maupun perijinan lainny	a yang sah menurut peraturan perundang-
undangan dilarang melaku	kan kegiatan apapun sebelum mendapat izin dari
pejabat yang berwenang.	
: IUP Operasi Produksi ini di	larang dipindahtangankan kepada pihak lain tanpa
persetujuan Bupati Morowal	
dalam melaksanakan kaciat	ESTARI sebagai Pemegang IUP Operasi Produksi mnya mempunyai hak dan kewajiban sebagaimana
tercantum dalam Lampiran l	II kemutusan ini

KEDUA

KETIGA

KEEMPAT

 KELIMA : Selambat-lambatnya 60 (enam puluh) hari kerja setelah diterbitkannya Keputusan ini Pemegang IUP Operasi Produksi sudah harus menyampaikan RKAB kepada Bupati Morowali untuk mendapat persetujuan.
 KEENAM : Terhitung sejak 90 (sembilan puluh) hari kerja sejak persetujuan RKAB

 1 Terhitung sejak 90 (sembilan puluh) hari kerja sejak persetujuan RKAB sebagaimana dimaksud dalam diktum Kelima Pemegang IUP Operasi Produksi sudah harus memulai aktifitas di lapangan.

 KETUJUH
 Tanpa mengurangi ketentuan peraturan perudang-undangan maka IUP Operasi Produksi ini dapat diberhentikan sementara, dicabut, atau dibatalkan, apabila pemegang IUP Operasi Produksi tidak memenuhi kewajiban dan larangan sebagaimana dimaksud dalam diktum Ketiga, Keempat, dan Kelima dalam Keputusan ini.

KEDELAPAN : Keputusan Bupati ini mulai berlaku pada tanggal ditetapkan.

Ditetapkan di : Bungku Pada Tanggal: 27 JUNI 2011 WAR HAFID

Tembusan disampaikan kepada Yth :

- 1. Menteri Energi dan Sumber Daya Mineral di Jakarta;
- 2. Menteri Keuangan di Jakarta;
- 3. Sekretaris Jenderal Departemen Energi dan Sumber Daya Mineral di Jakarta;
- 4. Inspektur Jenderal Departemen Energi dan Sumber Daya Mineral di Jakarta;
- 5. Direktur Jenderal Pajak, Departemen Keuangan di Jakarta;
- 6. Direktur Jenderal Perbendaharaan, Departemen Keuangan di Jakarta;
- 7. Direktur Jenderal Pendapatan Daerah, Departemen Dalam Negeri di Jakarta;
- 8. Gubernur Sulawesi Tengah di Palu;

 Kepala Biro Hukum dan Humas/Kepala Biro Keuangan/Kepala Biro Perencanaan dan Kerjasama Luar Negeri, Setjen Departemen Energi dan Sumber Daya Mineral di Jakarta;

- 10. Sekretaris Direktorat Jenderal Mineral, Batubara dan Panas Bumi di Jakarta;
- 11. Direktur Teknik dan Lingkungan Mineral, Batubara dan Panas Bumi di Jakarta;
- 12. Direktur Pembinaan Program Mineral, Batubara dan Panas Bumi di Jakarta;
- 13. Direktur Pembinaan Pengusahaan Mineral dan Batubara di Jakarta;
- 14. Direktur Pajak Bumi dan Bangunan, Departemen Keuangan di Jakarta;
- 15. Kepala Dinas Energi dan Sumber Daya Mineral, Prop. Sulawesi Tengah di Palu;
- 16. Kepala Dinas Energi dan Sumber Daya Mineral, Kab. Morowali di Bungku;
- 17. Direksi PT. ERABARU TIMUR LESTARI di Jakarta;

LAMPIRAN II :

Surat Keputusan (SK) Bupati Morowali Nomor : 540.3 / Slc. 017 / DESDAA / VI / 2011 Tanggal : 27 JUNI 2011

KOORDINAT WILAYAH IZIN USAHA PERTAMBANGAN OPERASI PRODUKSI PT. ERABARU TIMUR LESTARI

LOKASI	
PROVINSI	: SULAWESI TENGAH
KABUPATEN	: MOROWALI
KECAMATAN	: BAHODOPI
DESA	: LELE, DAMPALA DAN SIUMBATU
KOMODITAS	: NIKEL DMP
LUAS WILAYAH	: 1.159 Ha
KODE WILAYAH	: MW316

NO	GARIS BUJUR BUJUR TIMUR (BT)				GARIS LINTAN LINTANG UTARA			LU)/
				LINTANG SELATAN (LS)				
×0	0	7	77	BT/E	0	7	99	LS/LU
1	121	50	27,95	BT	2	53	10,04	LS
2	121	50	4,05	BT	2	53	10,04	LS
3	121	50	4,05	BT	2	52	27,75	LS
4	121	49	49,04	BT	2	52	27,75	LS
5	121	49	49,04	BT	2	51	57,07	LS
6	121	47	45,94	BT	2	51	57,07	LS
7	121	47	45,94	BT	2	52	18,27	LS
8	121	48	13,64	BT	2	52	18,27	LS
9	121	48	13,64	BT	2	52	35,47	LS
10	121	48	55,98	BT	2	52	35,47	LS
11	121	48	55,98	BT	2	53	10,04	LS
12	121	46	3,92	BT	2	53	10,04	LS
13	121	46	3,92	BT	2	52	10,9	LS
14	121	46	19,09	BT	2	52	10,9	LS
15	121	46	19,09	BT	2	52	0	LS
16	121	47	44,46	BT	2	52	0	LS
17	121	47	44,46	BT	2	51	55,06	LS
18	121	49	50,66	BT	2	51	55,06	LS
19	121	49	50,66	BT	2	52	0	LS
20	121	50	27,95	BT	2	52	0	LS

LAMPIRAN III

Surat Keputusan (SK) Bupati Morowali :

:

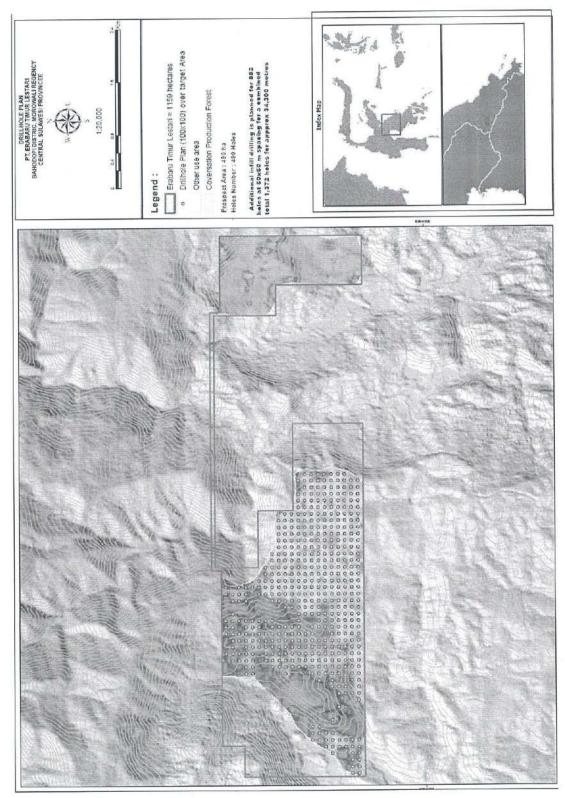
Nomor : 540.3 /SK. 017 / DESDM / VI / 2011 Tanggal : 27 JUNI 2011

Hak dan Kewajiban

- A. Hak
 - 1. Memasuki WIUP sesuai dengan peta dan daftar koordinat;
 - 2. Melaksanakan kegiatan IUP Operasi Produksi (Konstruksi, Produksi, Pengolahan Pemurnian dan Pengangkutan Penjualan) sesuai dengan ketentuan peraturan perundang-undangan;
 - 3. Membangun fasilitas penunjang kegiatan IUP Operasi Produksi (Konstruksi, Produksi, Pengolahan Pemurnian dan Pengangkutan Penjualan) di dalam maupun diluar WIUP;
 - 4. Dapat menghentikan sewaktu-waktu menghentikan kegiatan IUP Operasi Produksi (Konstruksi, Produksi, Pengolahan Pemurnian dan Pengangkutan Penjualan) di setiap bagian atau beberapa bagian WIUP dengan alasan bahwa kelanjutan dari kegiatan IUP Operasi Produksi (Konstruksi, Produksi, Pengolahan Pemurnian dan Pengangkutan Penjualan), tersebut tidak layak atau praktis secara komersial maupun karena keadaan kahar, keadaan yang menghalangi sehingga menimbulkan penghentian sebagian atau seluruh kegiatan usaha pertambangan;
 - 5. Mengajukan permohonan pengusahaan mineral lain yang bukan merupakan asosiasi mineral utama yang diketemukan dalam WIUP;
 - 6. Mengajukan pernyataan tidak berminat terhadap pengusahaan mineral lain yang bukan merupakan asosiasi mineral utama yang diketemukan dalam WIUP;
 - Memanfaatkan sarana dan prasarana umum untuk keperluan kegiatan IUP Operasi Produksi (Konstruksi, Produksi, Pengolahan Pemurnian dan Pengangkutan Penjualan) setelah memenuhi ketentuan peraturan perundang-undangan;
 - 8. Dapat melakukan kerjasama dengan perusahaan lain dalam rangka penggunaan setiap fasilitas yang dimiliki oleh perusahaan lain baik yang berafiliasi dengan perusahaan atau tidak sesuai dengan ketentuan peraturan perundang-undangan;
 - 9. Dapat membangun sarana dan prasarana pada WIUP lain setelah mendapat izin dari pemegang IUP yang bersangkutan.

B. Kewajiban

- 1. Memilih yurisdiksi pada Pengadilan Negeri tempat dimana lokasi WIUP berada;
- Selambat-lambatnya 6 bulan setelah ditetapkannya keputusan ini, pemegang IUP Operasi Produksi harus sudah melaksanakan dan menyampaikan laporan pematokan batas wilayah IUP Operasi Produksi kepada Bupati;
- 3. Hubungan antara pemegang IUP Operasi Produksi dengan pihak ketiga menjadi tanggung jawab pemegang IUP Sesuai ketentuan perundang-undangan;
- 4. Melaporkan Rencana Investasi;
- 5. Menyampaikan rencana reklamasi;
- 6. Menyampaikan rencana pasca tambang;
- 7. Menempatkan jaminan penutupan tambang (sesuai umur tambang);
- 8. Menyampaikan RKAB selambat-lambatnya pada bulan November yang meliputi rencana tahun depan dan realisasi kegiatan setiap tahun berjalan kepada Bupati dengan tembusan kepada Menteri dan Gubernur;
- 9. Menyampaikan Laporan Kegiatan Triwulanan yang harus diserahkan dalam jangka waktu 30 (tiga puluh) hari setelah akhir dari triwulan takwim secara berkala kepada Bupati dengan tembusan kepada Menteri dan Gubernur;
- Apabila ketentuan batas waktu penyampaian RKAB dan pelaporan sebagaimana dimaksud pada angka 8 (delapan) dan 9 (sembilan) tersebut di atas terlampaui, maka kepada pemegang IUP Operasi Produksi akan diberikan peringatan tertulis;
- 11. Menyampaikan laporan produksi dan pemasaran sesuai dengan ketentuan peraturan perundang-undangan.
- 12. Menyampaikan Rencana Pengembangan dan Pemberdayaan Masyarakat sekitar


wilayah pertambangan kepada Bupati;

- 13. Menyampaikan RKTTL setiap tahun sebelum penyampaian RKAB kepada Bupati;
- 14. Memenuhi ketentuan perpajakan sesuai dengan ketentuan peraturan perundangundangan;
- 15. Membayar Iuran Tetap setiap tahun dan membayar Royalty sesuai dengan ketentuan peraturan perundang-undangan;
- 16. Menempatkan jaminan reklamasi sebelum melakukan kegiatan produksi dan rencana penutupan tambang sesuai ketentuan peraturan perundang-undangan;
- 17. Menyampaikan RPT (Rencana Penutupan Tambang) 2 Tahun sebelum kegiatan produksi berakhir;
- Mengangkat seorang Kepala Teknik Tambang yang bertanggung jawab atas Kegiatan IUP Operasi Produksi (Konstruksi, Produksi, Pengolahan Pemurnian dan Pengangkutan Penjualan), Keselamatan dan Kesehatan Kerja Pertambangan serta Pengelolaan Lingkungan Pertambangan;
- Kegiatan produksi dimulai apabila kapasitas produksi terpasang sudah mencapai 70% yang direncanakan;
- 20. Permohonan Perpanjangan IUP untuk Kegiatan Produksi harus diajukan 2 (dua) tahun sebelum berakhirnya masa izin ini dengan disertai pemenuhan persyaratan;
- 21. Kelalaian atas ketentuan tersebut pada butir 20, mengakibatkan IUP Operasi Produksi berakhir menurut hukum dan segala usaha pertambangan dihentikan. Dalam jangka waktu paling lama 6 (enam) bulan sejak berakhirnya keputusan ini. Pemegang IUP Operasi Produksi harus mengangkat keluar segala sesuatu yang menjadi miliknya, kecuali benda-benda/bangunan-bangunan yang dipergunakan untuk kepentingan umum;
- Apabila dalam jangka waktu sebagaimana dimaksud dalam butir 21, pemegang IUP Operasi Produksi tidak melaksanakan maka barang/aset pemegang IUP menjadi milik pemerintah;
- 23. Pemegang IUP Operasi Produksi harus menyediakan data dan keterangan sewaktuwaktu apabila dikehendaki oleh pemerintah;
- 24. Pemegang IUP Operasi Produksi membolehkan dan menerima apabila pemerintah sewaktu-waktu melakukan pemeriksaan;
- 25. Menerapkan kaidah pertambangan yang baik;
- 26. Mengelola keuangan sesuai dengan sistem akuntansi Indonesia;
- 27. Melaporkan pelaksanaan pengembangan dan pemberdayaan masyarakat setempat secara berkala;
- 28. Mengutamakan pemanfaatan tenaga kerja setempat, barang dan jasa dalam negeri sesuai dengan ketentuan peraturan perundang-undangan;
- 29. Mengutamakan pembelian dalam negeri dari pengusaha lokal yang ada di daerah tersebut sesuai dengan ketentuan peraturan perundang-undangan;
- 30. Mengutamakan seoptimal mungkin penggunaan perusahaan jasa pertambangan lokal dan/atau nasional;
- 31. Dilarang melibatkan anak perusahaan dan/atau afiliasinya dalam bidang usaha jasa pertambangan di WUP yang diusahakannya, kecuali dengan izin Menteri;
- 32. Melaporkan data dan pelaksanaan penggunaan usaha jasa penunjang;
- Menyerahkan seluruh data yang diperoleh dari hasil kegiatan IUP Operasi Produksi kepada Bupati dengan tembusan Menteri dan Gubernur;
- Menyampaikan proposal yang sekurang-kurangnya menggambarkan aspek teknis, keuangan, produksi dan pemasaran serta lingkungan sebagai persyaratan pengajuan permohonan perpanjangan IUP Operasi Produksi;
- 35. Memberikan ganti rugi kepada pemegang hak atas tanah dan tegakan yang terganggu akibat kegiatan IUP Operasi Produksi;
- 36. Mengutamakan pemenuhan kebutuhan dalam negeri (DMO) sesuai ketentuan perundang-undangan;
- 37. Penjualan produksi kepada afiliasi harus mengacu kepada harga pasar;
- 38. Kontrak penjualan jangka panjang (minimal 3 tahun) harus mendapat persetujuan terlebih dahulu dari Menteri;
- 39. Perusahaan wajib mengolah produksinya didalam negeri.
- 40. Pembangunan sarana dan prasarana pada kegiatan konstruksi antara lain meliputi :
 a. Fasilitas-fasilitas dan peralatan pertambangan;

- b. Instalasi dan peralatan peningkatan mutu mineral/batubara;
- c. Fasilitas-fasilitas Bandar yang dapat meliputi dok-dok, pelabuhan-pelabuhan, dermaga-dermaga, jembatan-jembatan, tongkang-tongkang, pemecah-pemecah air, fasilitas-fasilitas terminal, bengkel-bengkel, daerah-daerah penimbunan, gudang-gudang, dan peralatan bongkar muat;
- d. Fasilitas-fasilitas transportasi dan komunikasi yang dapat meliputi jalan-jalan, jembatan-jembatan, kapal-kapal, feri-feri, pelabuhan-pelabuhan udara, rel-rel, tempat-tempat pendaratan pesawat, hanggar-hanggar, garasi-garasi, pompa-pompa BBM, fasilitas-fasilitas radio dan telekomunikasi, serta fasilitas-fasilitas jaringan telegraph dan telepon;
- e. Perkotaan, yang dapat meliputi rumah-rumah tempat tinggal, toko-toko, sekolahsekolah, rumah sakit, teater-teater dan bangunan lain, fasilitas-fasilitas dan peralatan pegawai kontraktor termasuk tanggungan pegawai tersebut;
- f. Listrik, fasilitas-fasilitas air dan air buangan dan dapat meliputi pembangkitpembangkit tenaga listrik (yang dapat berupa tenaga air, uap, gas atau diesel), jaringan-jaringan listrik, dam-dam, saluran-saluran air, sistem-sistem penyediaan air dan sistem-sistem pembuangan limbah (tailing), air buangan pabrik dan air buangan rumah tangga;
- g. Fasilitas-fasilitas lain-lain yang dapat meliputi namum tidak terbatas, bengkelbengkel mesin, bengkel-bengkel pengecoran dan reparasi;
- h. Semua fasilitas tambahan atau fasilitas lain, pabrik dan peralatan yang dianggap perlu atau cocok untuk operasi pengusahaan yang berkaitan dengan WIUP atau untuk menyediakan pelayanan atau melaksanakan aktifitas-aktifitas pendukung atau aktifitas yang sifatnya insidentil.

APPENDIX B / LAMPIRAN B INITIAL EXPLORATION PROGRAM / PROGRAM EKSPLORASI AWAL

23CN1846 05

96 Y

COMMERCIAL TERMS OF THE ACQUISITION

MJN and ETL IUPs

- Nickel Industries to acquire 60% of the control and economic rights in each of MJN and ETL.
- Refundable commitment fee of US\$3.0 million for each of MJN and ETL (US\$5.9 million in total) (Commitment Fee), payable upon completion of the due diligence period, which is up to 90 days.
- Following the issuance of a positive due diligence notice, Nickel Industries will carry out an agreed Initial Exploration Program (IEP) within 18 months and for the purpose of determining the purchase consideration payable to the vendor at completion.
- After the IEP, Nickel Industries shall pay to the Vendor the purchase consideration, calculated as:

60% * the JORC Resource¹ * US\$2.50 per dmt above 1.70% nickel.

- Nickel Industries will provide an Exclusive Financing Commitment (**EFC**) in the form of interest-bearing loans, repayable prior to any dividend distributions.
- Nickel Industries shall receive an agency fee from the first production from the IUPs, as compensation for the Commitment Fee.

GF IUP

- Nickel Industries to acquire 60% of the control and economic rights in GF for a total consideration of US\$7 million, payable as follows:
 - an advance payment of US\$2 million (already paid);
 - a first milestone payment of US\$3 million (already paid); and
 - a final payment of US\$2 million upon the transfer of 60% of GF to Nickel Industries.
- Nickel Industries will provide an EFC in the form of interest-bearing loans, repayable prior to any dividend distributions.
- An application has been submitted to extend GF by an area of 491ha of prospective laterite. Should this application be successful, Nickel Industries is to pay the vendor an additional US\$4 million.

¹ Measured, indicated and inferred in dmt

APPENDIX 3

PT HENGJAYA MINERALINDO LABORATORY QAQC REPORT

PT HENGIAVA MINERALINDO NICKEL MINES LIMITED DEPARTEMENT QUALITY CONTROL Site Tangofa. Desa Tangofa Kecamatan Bungku Perisir Kabupaten Morowali Sulawesi Tengah Head Office Menara Rajawali 22³⁴ Jin DR Ide Anak Agong Gode Agung Lot \$81 Mega Kuningan Jalarta Selatan 12950 Indonesia Telp / Fax : (02.1) 29408230 - (02.1) 29408228 Email : sop@fhengjaya.co.id

STANDAR OPERASIONAL PROSEDUR

QAQC LABORATORIUM

PT HENGJAYA MINERALINDO NICKEL MINES LIMITED JOB SITE MOROWALI SULAWESI TENGAH INDONESIA

DEPARTMENT **QUALITY CONTROL** DIVISI **LABORATORIUM**

STANDAR OPERASIONAL PROSEDUR **IMPLEMENTASI QUALITY CONTROL/QUALITY ASSURANCE DI** LABORATORIUM

DAFTAR ISI/TABLE OF CONTENTS:

1. TUJUAN/PURPOSE

HALAMAN/PAGE:

-----8

- -----2 2. RUANG LINGKUP/SCOPE ----2 3. TANGGUNG JAWAB/RESPONSIBILITIES -----? 4. DEFINISI/DEFINITION 5. PROSEDUR/PROCEDURE
 - -----4
 - -----7
- 6. REFERENSI/REFERENCE 7. LAMPIRAN/ATTACHMENTS

DEPARTM	IENT	OTORISASI/AUTHORIZATION				
Quality Control		DISIAPKAN/PREPARED	DIPERIKSA/CHECKED	DISETUJUI/APPROVED	DIKETAHUI/ ACKNOWLEDGE	
DOCUMEN 023/SOP-QAQC/HM-Q EFFECTIFF Sept 25 th , DISTRIBU	<u>ОСЛАВАЧИ/2020</u> С DATE 2020		25/09/20	Hund	. J	
Quality Co	ontrol	LILIK KRISMAWANTO	WILLEM DIQUE	MUHAMMAD ILHAM	TONY LEE GREEN	
REVISION	PAGE	HEAD OF DEPT.	ONTRA TIONS MANA OTR	CHIEF TECHNICAL OF	CHIEF OPERATION	
00	01 - 07 QUALITY CONTROL		OPERATIONS MANAGER	MINE	OFFICER	

PT HENGJAYA MINERALINDO NICKEL MINES LIMITED DEPARTEMENT QUALITY CONTROL Site Tragofa Deea Tangofa Kocamatan Bengjar Povier Kabopaten Morowell Solarwei Tengah Office Menara Rajawali 22¹⁰ Jin DR Ide Anal Agang Gode Agang Lot 591 Moga Kuningan Jakarta Selatan 12950 Ind Teip / Pre: (2011) 25408220 - (2011) 25408220 Ernal : sep@Bengioya.co.id

Telp / Fax : (021) 29408230 - (021) 29408228 Email : sop@henginya.co.id STANDAR OPERASIONAL PROSEDUR

QAQC LABORATORIUM

1. TUJUAN

Tujuan dari *Quality Assurance* (QA) adalah menjamin kualitas produk yang dihasilkan dan memastikan proses pembuatan produk tersebut sesuai dengan standar dan persyaratan yang telah ditentukan. Kegiatan Quality Assurance diantaranya memastikan Presisi dan akurasi pengerjaan.

Tujuan utama *Quality Control* (QC) adalah memastikan bahwa produk yang akan dikirimkan ke pelanggan adalah sesuai dengan spesifikasi dan kualitas yang telah disepakati dan dapat diterima sesuai dengan persyaratan kualitas yang ditentukan. Jika ditemukan produk yang tidak sesuai dengan spesifikasi dan kualitas yang telah ditentukan maka diperlukan tindakan perbaikan yang sesuai.

2. RUANG LINGKUP

SOP ini berlaku untuk seluruh area PT Hengjaya Mineralindo, terutama di QA/QC Departement.

3. PENANGGUNG JAWAB

Supervisor/Pengawas memastikan bahwa seluruh area kerja, dan timnya sudah siap untuk melakukan pekerjaan dengan baik, sudah memahami alur kerja yang benar sesuai dengan metode standar yang akan dilakukan.

Foreman memastikan seluruh peralatan kerja dalam kondisi baik, crew yang bekerja sudah dilengkapi dengan APD yang sesuai, dan lingkungan tempat bekerja sudah bersih untuk menghindari kontaminasi saat proses berlangsung. Crew memastikan sudah siap dengan APD yang sesuai, dan sudah memahami tugas yang diberikan oleh foreman.

PURPOSE

Quality Assurance (QA) is a proactive approach to ensure that the chemical analyses of samples are correct and accurate. It involves the addition of check samples such as blanks, duplicates, replicates and standards. Quality Assurance activities ensure work precision and accuracy.

Quality Control (QC) is a reactive process analysing the data collected from the lab to ensure that the information given to customers are in accordance with agreed specifications and quality. It occurs through controlling sub-sampling precision and contamination during sample preparation and controlling analytical precision and analytical precision during the sample assaying process. If a product is not in accordance with the specified specifications and quality, then appropriate corrective action is required.

SCOPE

This SOP describes the activities specifically undertaken at the PT Hengjaya Mineralindo QA/ QC Department.

RESPONSIBILITY

Supervisor ensures that the entire work area, and his team, are ready to do the job properly, have understood the correct flowsheet as described in the SOP. Is responsible for ensuring all analyses are accurate and correct and remedying any errors before the final results are entered onto the database and circulated to internal, and especially, external recipients.

Foreman ensures that all work equipment is in good condition, the working crew is equipped with appropriate PPE, and the workplace environment is clean to avoid contamination during the process. Crew ensures that they are ready with the appropriate PPE, and that they understand the assignment given by the foreman.

PT HENGJAYA MINERALINDO NICKEL MINES LIMITED DEPARTEMENT QUALITY CONTROL Site Tangofa. Desa Tengola Kecamatan Bungku Peninir Kabupaten Morowali Sulaweni Tengah Gice Menara Rajawali 22[°] Ja. DR. Ide Anak. Agang Gode Agang Lot SH Mega Kuningam Jalarta Schattan 12950 Indonesin Tely / Far: (2011) 20482200 - (2021) 204802228 Email: segöffenengiava.co.id

1. Hengjaya Almeranndo

STANDAR OPERASIONAL PROSEDUR QAQC LABORATORIUM

4. DEFINISI

Akurasi adalah tingkat ketidakadaan "bias" (kekeliruan) dalam sampel. Dengan kata lain makin sedikit tingkat kekeliruan yang ada dalam sampel, makin akurat sampel tersebut. Tolak ukur adanya "bias" atau kekeliruan adalah populasi. Biasanya akurasi menyatakan seberapa dekat nilai hasil pengukuran dengan nilai sebenarnya (*true value*) atau nilai yang dianggap benar (*accepted value*). Jika tidak ada data sebenarnya atau nilai yang dianggap benar tersebut maka tidak mungkin untuk menentukan beberapa akurasi pengukuran tersebut.

Presisi adalah mengacu pada persoalan sedekat mana estimasi kita dengan karakteristik populasi. Presisi diukur oleh simpangan baku *(standart error)*. Makin kecil perbedaan diantara simpangan baku yang diperoleh dari sampel (S) dengan simpangan baku dari populasi (S), makin tinggi pula tingkat presisinya. Biasanya presisi menyatakan seberapa dekat nilai hasil dua kali atau lebih pengulangan pengukuran. Semakin dekat nilai – nilai hasil pengulangan pengukuran maka semakin presisi pengukuran tersebut.

DR Sample adalah control sample pada proses penghancuran sample menjadi ukuran 2mm (10mesh) menggunakan *double roll crusher* dan dibagi menjadi dua bagian yang sama (homogen) menggunakan splitter.

DA Sample adalah control sample pada proses penghalusan sample menjadi ukuran 0.07mm (200mesh) menggunakan *pulverizer* dan dibagi menjadi dua bagian yang sama (homogen) dengan matrix 4x5 skop 0.25D.

Blank Sample berupa control sample tanpa kandungan elemen Nikel, Besi dan Kobalt seperti batu kapur atau pasir kuarsa, dan biasanya digunakan untuk mengecek ada atau tidaknya kontaminasi saat proses pengerjaan sample.

Sieving Test adalah control yang dilakukan pada proses pengayakan sample untuk pengecekan kehalusan sample (-200 mesh). Standard yang kami tetapkan yaitu 95% sample yang lolos dari ayakan, apabila kurang dari 95% ini akan menjadi control pada tingkat kehalusan sample dan efeknya akan berpengaruh kepada homogenitas sample.

DEFINITION

Accuracy is the degree of absence of "bias" (error) in the sample. In other words, the less errors there are in the sample, the more accurate the sample. The benchmark of "bias" or error is the population. Usually accuracy states how close the value of the measurement results to the true value (true value) or the value that is considered true (accepted value). If no actual data or values are considered correct then it is not possible to determine some of the accuracy of these measurements.

Precision is referring to the problem as close as our estimation to the characteristics of the population. Precision is measured by the standard deviation (standard error). The smaller the difference between the standard deviation obtained from sample (S) and the standard deviation from population (S), the higher the precision level. Usually precision states how close the result is to two or more measurements. The closer the values of the measurement results are, the more precise the measurement is.

DR sample is a control sample collected from the double roll crusher product where two splits are taken from the same sample to test the homogeneity and precision of the splitting and crushing process.

DA Sample is a control sample collected from the final 200# (75 micron) fines product where two splits are taken from the same sample to test the analytical precision of the pulverizing and incremental splitting process using a matrix of 4 x 5 and a 0.25D scoop.

Blank Sample is a control sample barren in the elements being analysed, eg Ni, Fe and Co, such as limestone or quartz sand, and are used to test for contamination during the sample preparation and assay stages.

Sieving Test is a particle sizing test exercise to test the fineness of the sample crushing and pulverizing stages. A standard of 95% of the 200# screened product is required to pass the 200# screen to ensure adequate homogeneity of the sample to be assayed. PT HENGJAYA MINERALINDO NICKEL MINES LIMITED DEPARTEMENT QUALITY CONTROL Site Tangofa Deen Tangofa Keenanatan Bungka Peniari Kabupaten Morwali Sulawoni Tengah ara Rajmwali 22⁴⁴ Jh. DR. Ide Annt. Agang Gode Agang Lot. SHI Mega Kuningan Jalarta Selatan 12950 Indor Telp / Pac: (2011) 20408230 - (2011) 2904082316 - (2011) 204082316 - (2011) 2010

STANDAR OPERASIONAL PROSEDUR QAQC LABORATORIUM

Replicate Sample adalah sample control dimana satu bagian dari sample pulp digunakan untuk menghasilkan dua sample pellet yang diberi nomor sample berbeda dan dimasukkan kedalam batch atau lembar kerja yang sama. Replikat sample dilakukan untuk menghetahui keakuratan hasi Analisa sampel.

Certified Reference Material (CRM) Sample adalah sample yang disiapkan secara khusus dengan nilai rata-rata yang tersertifikasi dari element misalnya Ni, Fe, dan Co dalam standar dengan batas kepercayaan dan toleransi yang terkait. CRM digunakan untuk memantau nilai sample yang sedang diuji, unutk memungkinkan kami memantau keakuratan proses pengujian.

Cross Check Sample adalah hasil split dari sample yang diuji pertama kali di PT HM dan kemudian dikirim ke laboratorium komersial atau independen untuk membandingkan keakuratan Lab HM terhadap laboratorium yang lain.

5. PROSEDUR

1. DR Sample :

- 1.1. Sample dihancurkan menggunakan Double Roll Crusher.
- 1.2. Membagi sample menjadi dua bagian yang sama menggunakan Splitter (Bagian A dan Bagian B).
- Bagian A sebagai sample original dan Bagian B sebagai sample DR.
- 1.4. Sample DR dianalisa bersama dengan sample Original.
- 1.5. Untuk sample Explorasi pengambilan sample DR dilakukan dua kali setiap satu Batch sample (jumlah 100sample/job) secara sistematis. Dan untuk sample mining dan sample produksi, pengambilan sample secara acak.

Replicate Sample is a control sample where one portions of the same pulp sample are used to produce two separate pressed powder pellets that are given different sample numbers and inserted into the same batch, or Job Sheet. Replicate samples are carried out to determine the accuracy of the results of sample analysis.

Certified Reference Materials (CRMs) are especially prepared samples with certified mean values of elements eg Ni, Fe and Co, in the standard, with associated confidence and tolerance limits. They are used to monitor the values of the standard against the values of the unknown samples being assayed, to allow us to monitor the accuracy of the assay process.

Check Sample / Interlaboratory Check are second splits of samples assayed first at the PT HM and sent to commercial or independent laboratories to compare the accuracy of the HM lab relative to the another laboratory.

PROCEDURE

1. DR Sample :

- 1.1. The sample is crushed using a Double Roll Crusher.
- 1.2. Divide the sample into two equal parts using a Jones Riffle Splitter (Part A and Part B).
- 1.3. Part A is the original sample and Part B is the DR sample.
- 1.4. DR samples are analyzed in the same batch together with the original sample.
- 1.5. For exploration samples, DR samples are taken twice per batch of samples (total 100 samples), and systematically. For mining samples and production samples are taken with random sampling.

STANDAR OPERASIONAL PROSEDUR QAQC LABORATORIUM

2. DA Sample :

- Sample yang berukuran ± 2mm (Bagian A) Dihaluskan menggunakan Pulverizer hingga berukuran 200mesh.
- 2.2. Membagi sample menjadi dua bagian yang sama (Bagian A1 dan Bagian A2) dengan menggunakan Martix 4x5 skop 0.25D.
- Bagian A1 sebagai sample original dan Bagian A2 sebagai sample DA.
- 2.4. Sample DA dianalisa bersama dengan sample Original.
- 2.5. Untuk sample Explorasi pengambilan sample DA dilakukan dua kali setiap satu Batch sample (jumlah 100sample/job) secara sistematis. Dan untuk sample mining dan sample produksi, pengambilan sample secara acak.

3. Blank Sample :

- 3.1. Sample Batuan (batu gamping) yang tidak mengandung Unsur Ni Dan Fe kemudian di hancurkan dengan menggunakan Jaw Crusher hingga berukuran ± 5mm.
- Sampel tersebut kemudian di hancurkan kembali menggunakan Double Roll Crusher hingga berukuran 2mm.
- Dihaluskan menggunakan Pulverizer hingga menghasilkan partikel yang berukuran 200mesh (0.07mm).
- 3.4. Sample kemudian di press menggunakan press cup.
- 3.5. Dianalisa menggunakan ED-XRF.

4. Sieving Test :

- Sample pulp yang berukuran 200mesh kemudian ditimbang sebanyak ±50gr, dan dicatat sebagai W₁.
- 4.2. Diayak menggunakan ayakan dengan ukuran partikel 200mesh.
- Sample yang lolos dari ayakan kemudian ditimbang, dan dicatat sebagai W₂.
- 4.4. Perhitungan : (W₂/W₁) x 100.
- 4.5. Sieving yang bagus diatas 95%.

2. DA Sample :

- 2.1. Samples of ± 2mm material (Part A) were pulverised using a Pulverizer to 200mesh, -75 micron size.
- 2.2. Incremental splitting of the sample into two equal parts (Part A1 and Part A2) using a 4x5 Matrix and 0.25D scoop.
- 2.3. Part A1 is the original sample and Part A2 is the DA sample.
- 2.4. The DA sample is analyzed in the same batch as the original sample.
- 2.5. For exploration samples, DA sample is taken twice in every one Batch of samples (total 100 samples / job) systematically. And for mining sample and production sample is taken in random sequence.

3. Blank Sample :

- 3.1. Rock samples (limestone) that do not contain Ni and Fe elements are crushed using a Jaw Crusher to a size of \pm 5mm.
- 3.2. The sample is then crushed again using Double Roll Crusher to +/- 2mm in size.
- 3.3. Pulverised using a Pulverizer to produce particles passing 200mesh screen (75 micron).
- 3.4. The sample is then pressed into a pressed powder pellet using a press cup.
- 3.5. Analyzed using ED-XRF.

4. Sieving Test :

- 4.1. Pulp samples passing 200mesh screen are weighed ± 50g, and are referred to as W1.
- 4.2. Screened using a sieve with a particle size of 200mesh.
- 4.3. The samples that passed the sieve were weighed and recorded as W2.
- 4.4. Calculation: (W2 / W1) x 100.
- 4.5. Test is positive test when >95% sample passes the 200# screen.

PT HENGJAYA MINERALINDO NICKEL MINES LIMITED DEPARTEMENT QUALITY CONTROL Site Tangofa Dom Tangofa Kocamatan Bangka Penisir Kabapaten Morowali Sulawosi Tengah ad Office Menara Rajawali 22th In DR lide Anak Agang Gode Agang Lot SHI Mega Kuningan Jakata Selatan 12950 Indonesis Tela / Par: (2012) 2405230 - (2012) 29062232 Email : eog@bengiyay.co.id

 \mathbf{O}

STANDAR OPERASIONAL PROSEDUR QAQC LABORATORIUM

- 5. Replicate Sample :
- 5.1. Sample pulp yang berukuran 200mesh kemudian di press sebagai original sampel.
- 5.2. Sample yang sama kemudian di press kembali seperti proses awal sebagai Replicate Sample.
- 5.3. Dianalisa menggunakan ED-XRF.

6. Certified Reference Material (CRM) Sample :

- 6.1. 10 gram CRM sample (Oreas) di press menggunakan alat pres cup.
- 6.2. Dianalisa menggunakan ED-XRF dengan mengikutkan sample original yang lain.

7. Cross Check Assay Sample :

- 7.1. Mengambil arsip sample Explorasi sebanyak empat sample setiap batch secara sistematis.
- 7.2. Mengambil arsip sample Mining dan sample produksi sebanyak satu sample setiap batch secara Random.
- 7.3. Total jumlah sample Cross Check sebanyak 4% dari jumlah total sample setiap bulannya.
- 7.4. Sample siap dikirim ke LAB Independen.

8. AKURASI :

- 8.1 Mengumpulkan semua data CRM Sample (OREAS) hasil pembacaan WD-XRF.
- 8.2. Menghitung standar deviasi dari data yang telah dikumpulkan.
- 8.3 Standar deviasi tersebut sebagai acuan untuk Upper dan lower garis batas toleransi ukuran (dua dan tiga kali dari nilai standar deviasi).
- 8.4. Nilai acuan akurasi diambil dari nilai CRM yang bersertifikat.
- 8.5. Dibuat Grafik (XY Scatter) berdasarkan data yang didapatkan.
- 8.6. Akurasi yang bagus menunjukkan nilai original dan sampel adalah sama.

5. Replicate Sample :

- 5.1. Approx. 10 gr of 200# pulp sample is used to make a pressed powder pellet, the original sample.
- 5.2. A further split of the same sample is also processed into a Replicate Sample.
- 5.3. Analyzed using ED-XRF.

6. Certified Reference Material (CRM) Sample :

- 6.1. A 10 gr sample of the OREAS standard sample (OREAS) is pressed into a powdered pellet.
- 6.2. This pellet analyzed using ED-XRF along with original samples in that particular batch.

7. Cross Check Assay Sample :

- 7.1. Four exploration samples systematically taken from each batch (from stored sample archive).
- 7.2. With mining and production samples, one sample taken randomly from each batch.
- 7.3. The total number of Cross Check Assay samples is 4% of the total number of samples assayed each month.
- 7.4. Samples are sent to the Independent LAB (Geoservices, Intertek, Other) for independent assay.

8. ACCURACY

- Collect all CRM Sample (OREAS) data from WD-XRF readings.
- 8.2. Calculate the standard deviation of the data that has been collected.
- 8.3 The standard deviation is a reference for the upper and lower limits of the tolerance (twice and three times the standard deviation value) and confidence limits.
- 8.4. The accuracy reference value is taken from the certified CRM value.
- 8.5. Produce scatterplots (XY Scatter) for the data obtained.
- 8.6. Good accuracy shows that the original and sample values are the same.

PT HENGJAYA MINERALINDO NICKEL MINES LIMITED DEPARTEMENT QUALITY CONTROL Site Tangofa. Joeun Tangofa Keeunstan Bangka Penisir Kabupaten Morowali Stalawesi Tengah Head Office Menara Rajwali 22^{ed} In Di Rido Anak. Agang Gode Agang Lot. 591 Mega Kaningan Jularita 5041tatha 12950 Indonesia Tedp / Fac: (2011) 9048230 - (2011) 29048232 Fanal : septidhengiaya co. sid

Telp / Fax: (021) 29408230 - (021) 29408228 Email: sop@henginya.co.id STANDAR OPERASIONAL PROSEDUR

QAQC LABORATORIUM

- 9. PRESISI :
- 9.1 Mengumpulkan semua data dari sample DA, DR, Duplikat, Cross check assay dan data original dari berbagai jenis sampel tersebut.
- Menghitung koefisien determinasi (R²) dari perbandingan data originalnya.
- 9.3. Dibuat Grafik (XY Scatter) berdasarkan data yang didapatkan.
- 9.4. Presisi yang bagus menunjukkan nilai R² sama dengan 1.

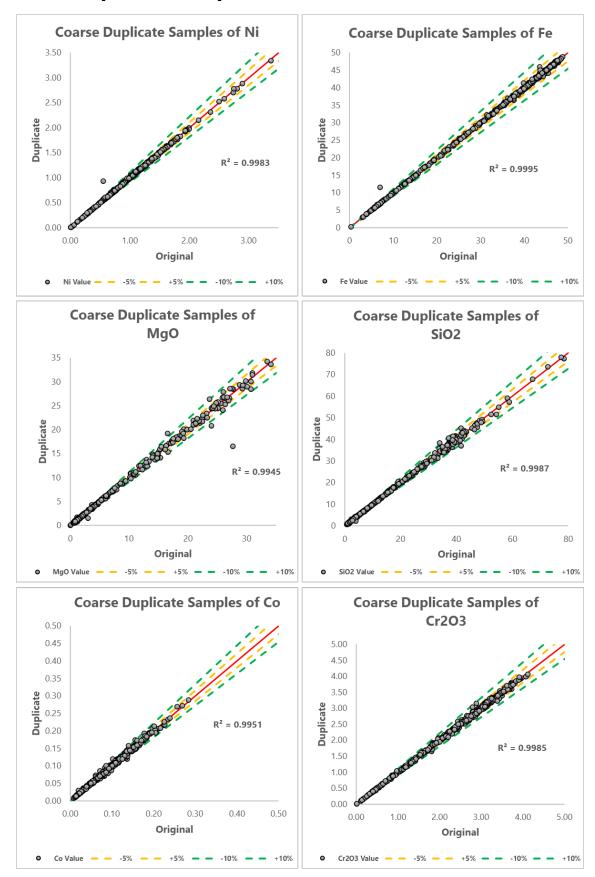
9. PRECISION

- 9.1 Collect all data from DA, DR, Replicate, Cross check assay and original data from different sample types.
- 9.2. Calculate the correlation coefficient (R²) for the data set for the original data.
- 9.3. Produce scatterplot (XY Scatter) based on the data obtained.
- 9.4. Excellent precision shows R² is equal to 1.

6. REFERENSI

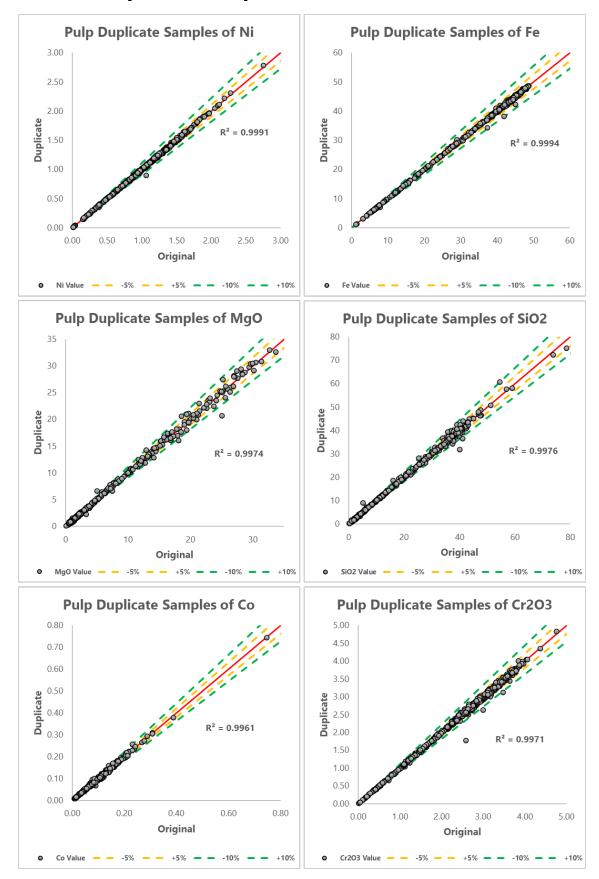
References

PT HENGJAYA MINERALINDO NICKEL MINES LIMITED DEPARTEMENT QUALITY CONTROL Site Tangofa. Desa Tangofa Kecamatan Bangka Penisir Kabupaten Morowali Sulaweni Tengah Head Office Menara Rajawali 22th Ja.D.R. Ide Annik Agong Gode Agong Lot. 591 Mega Kaningan Jakarta Selstan 12950 Indonesis Telp. / Fac: (021) 29408230 - (021) 29408228 Ennail : sop@henginya.co.id


STANDAR OPERASIONAL PROSEDUR QAQC LABORATORIUM

7. Lampiran

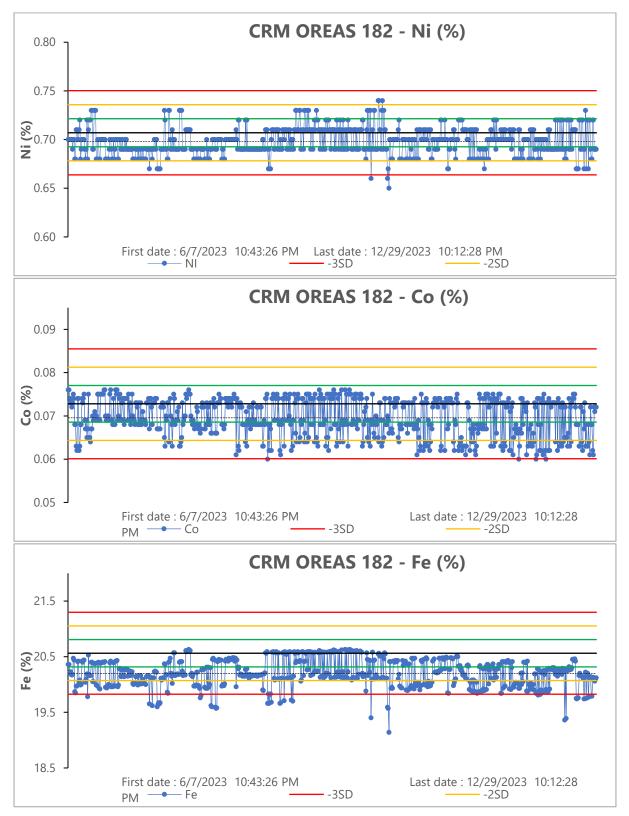
Attachment

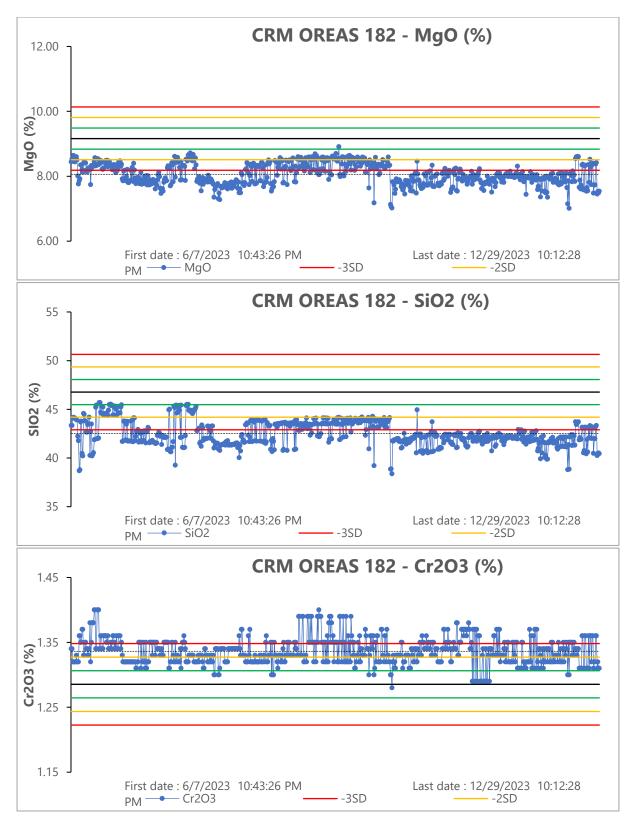

No	Name	Position	Department	Signature	
1				1	
2					2
3				3	
4					4
5				5	
6					6
7				7	
8					8
9				9	
10					10
11				11	
12					12
13				13	
14					14
15				15	
16					16
17				17	
18					18
19				19	
20					20
21				21	
22					22
23				23	

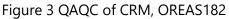
020/SOP-QAQC/HM-QC/LAB/VII/2020|8

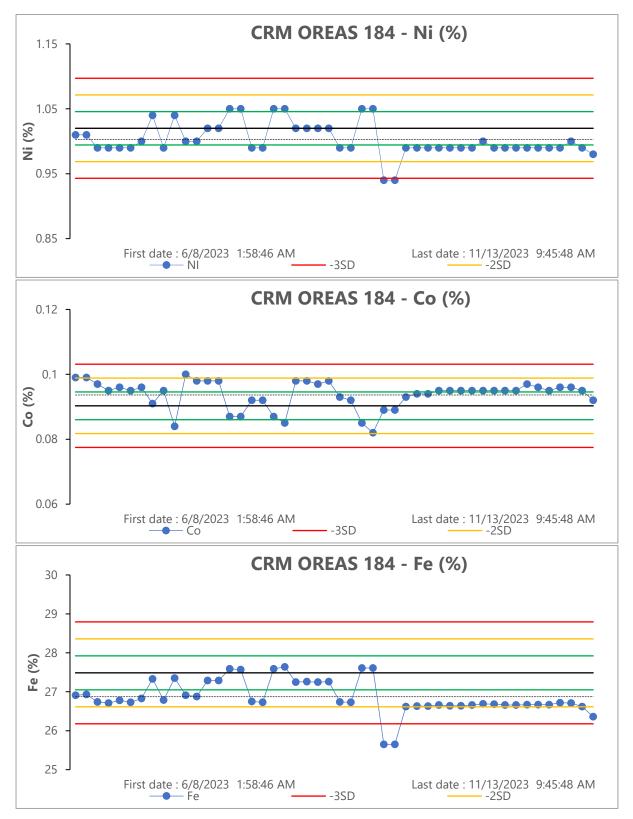
Coarse Duplicate Samples

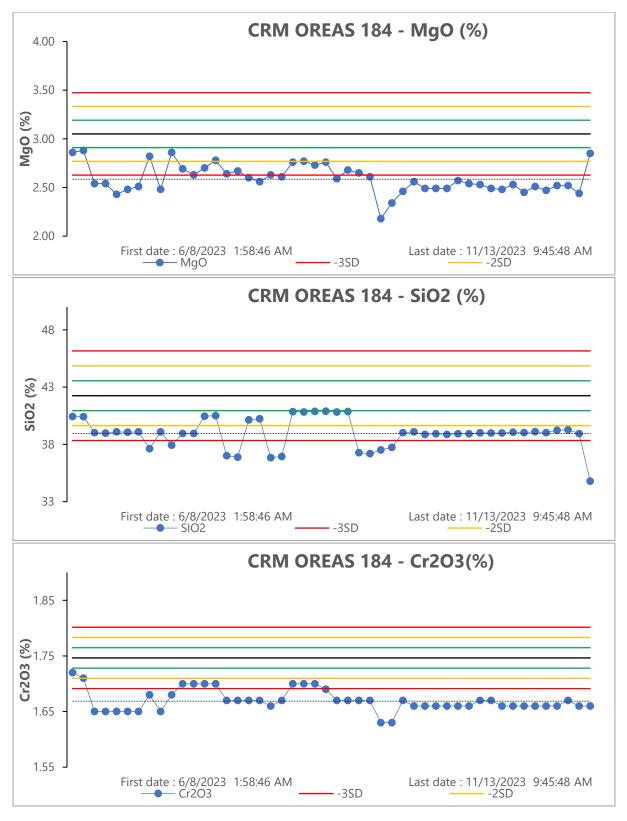
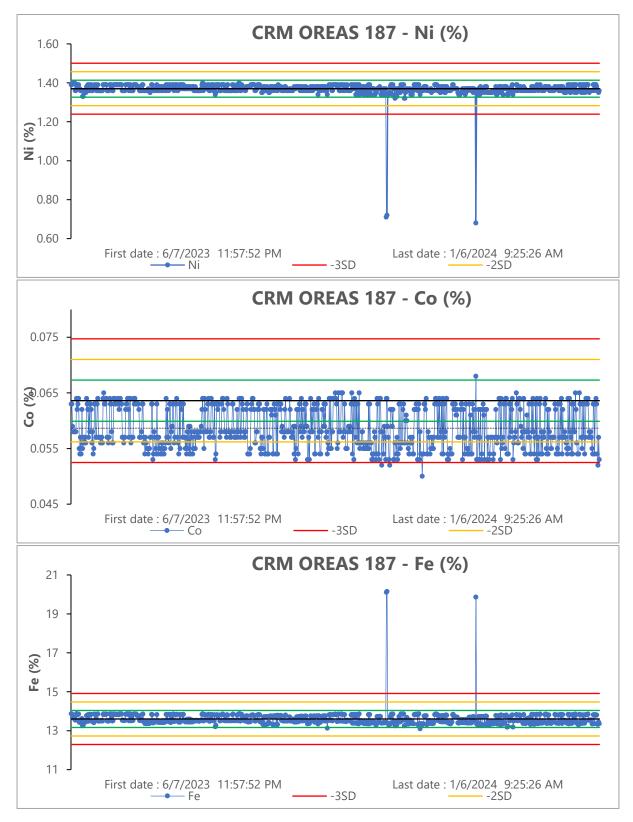
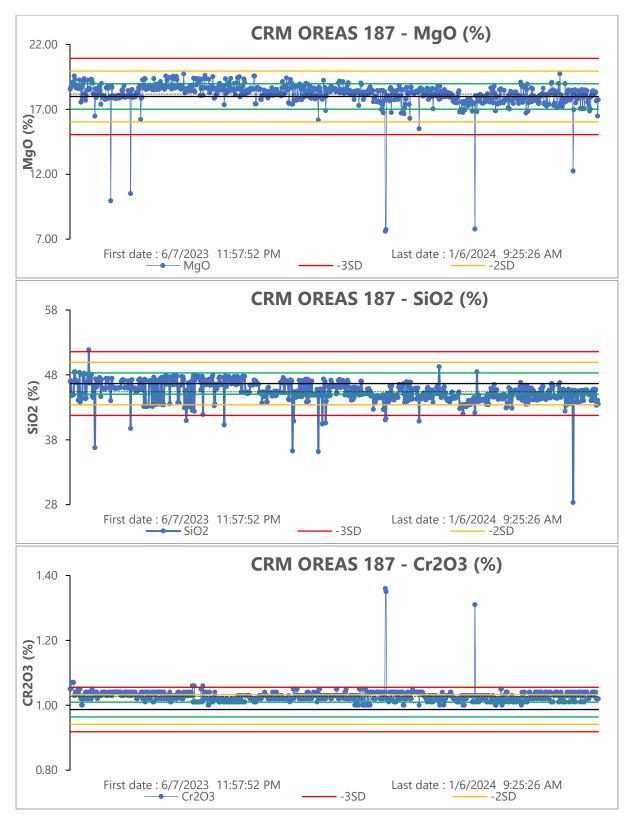
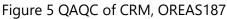
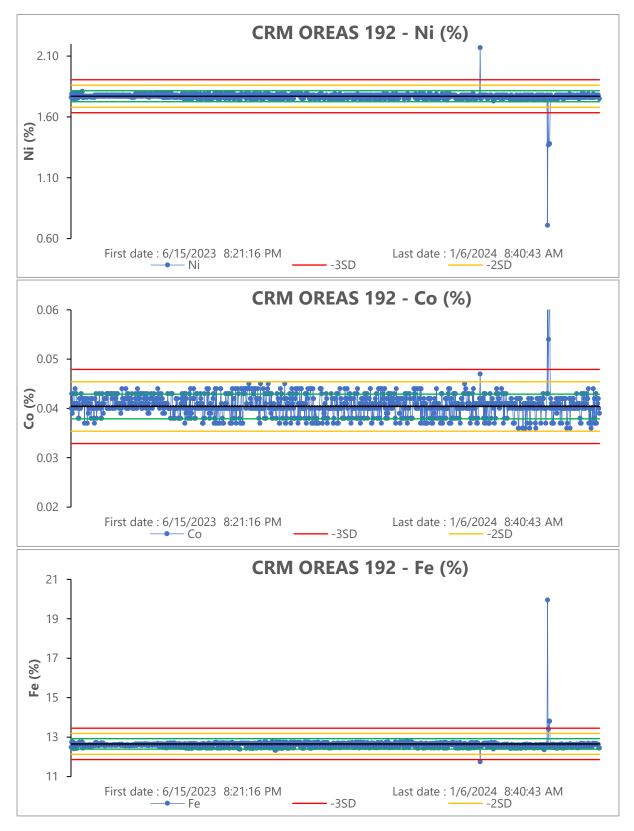
Figure 1 QAQC of Coarse duplicate samples

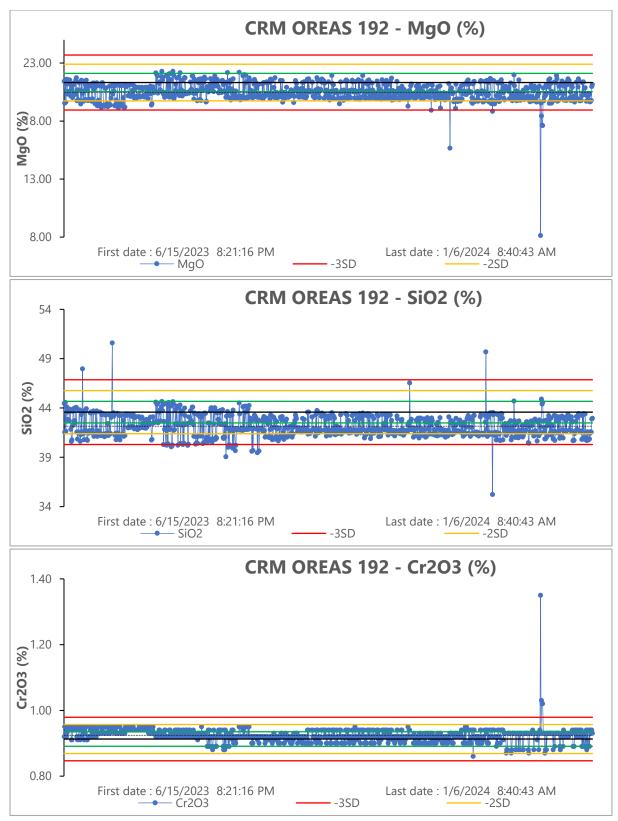


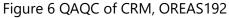

Pulverize Duplicate Samples

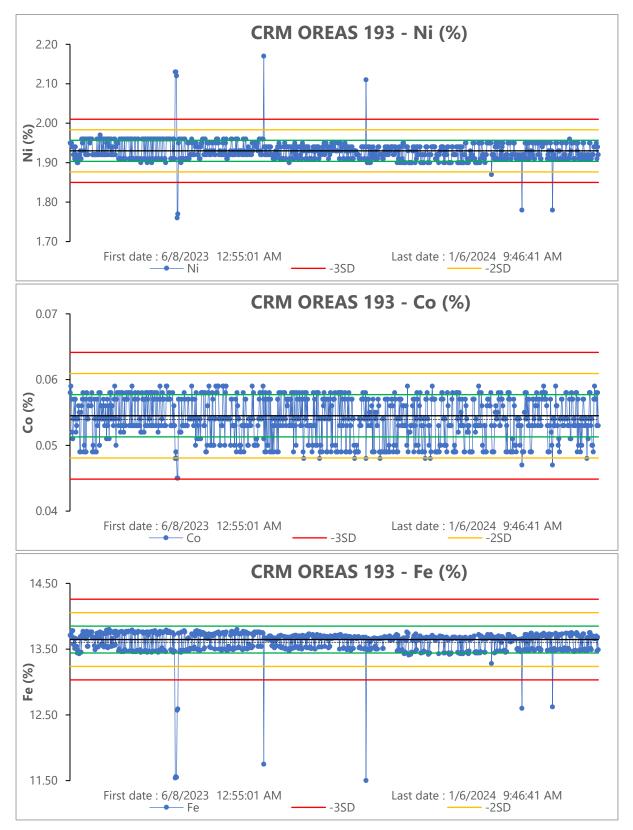

Figure 2 QAQC of pulverize duplicate samples

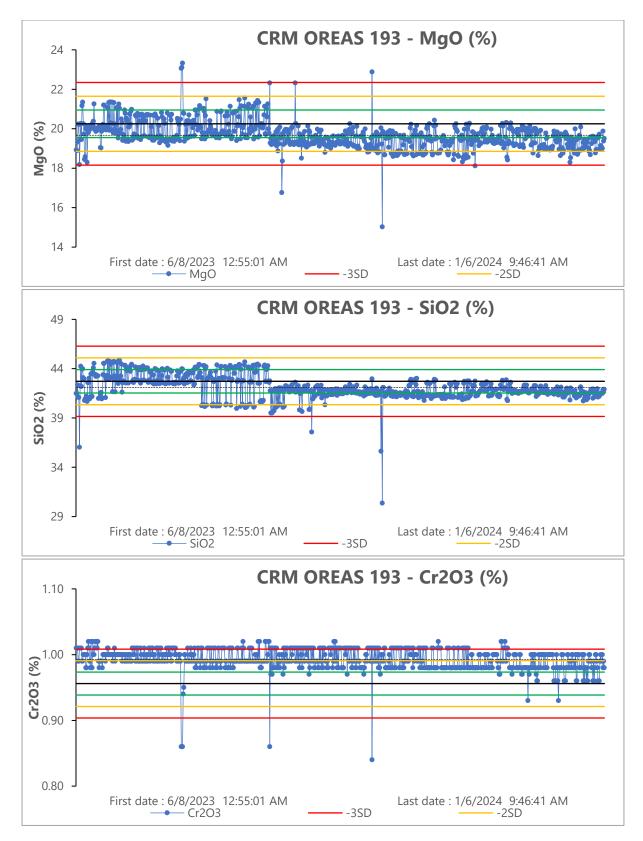
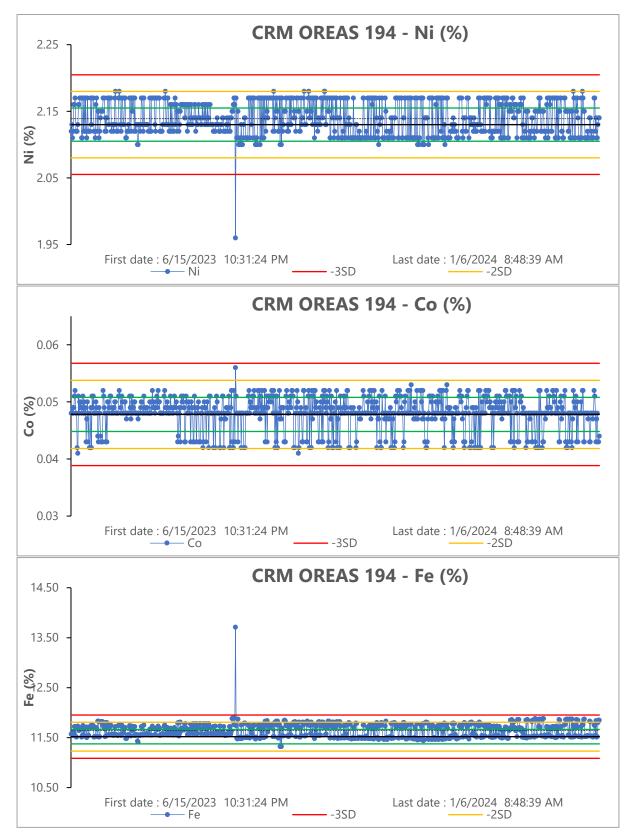
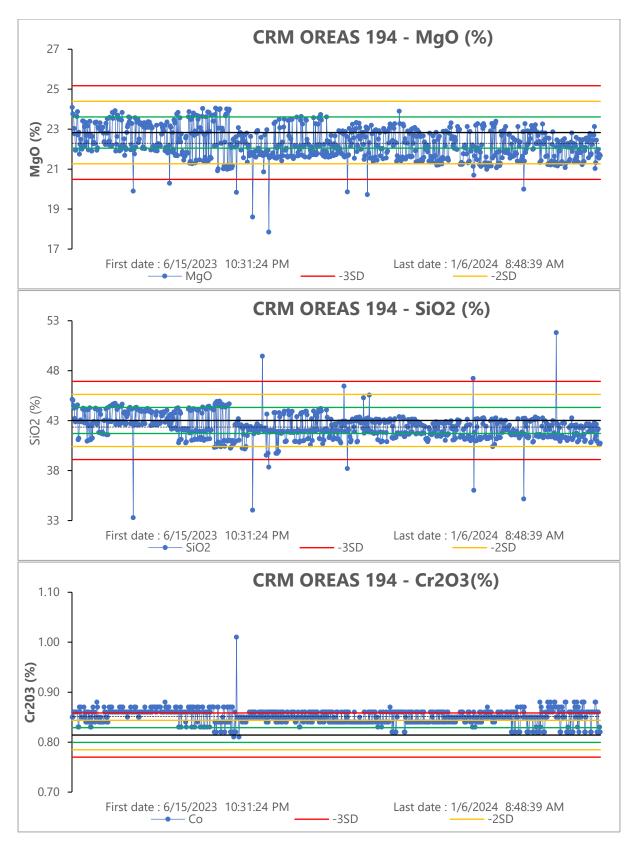
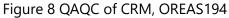

Certified Reference Materials

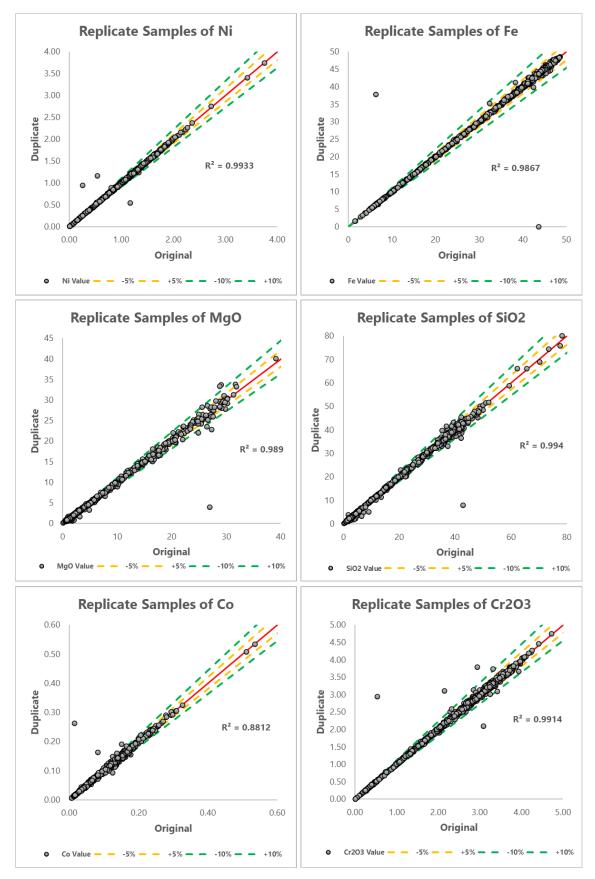






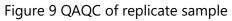

Figure 4 QAQC of CRM, OREAS184

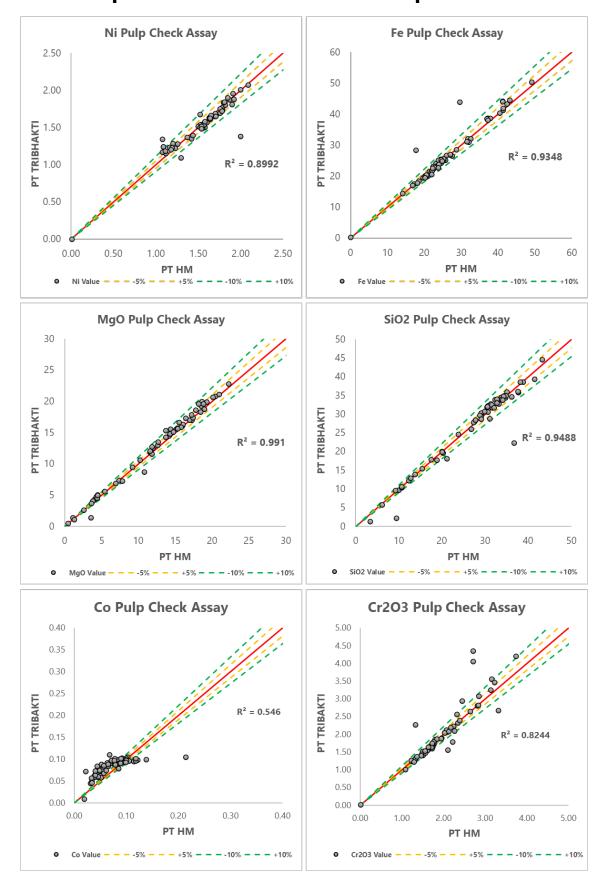




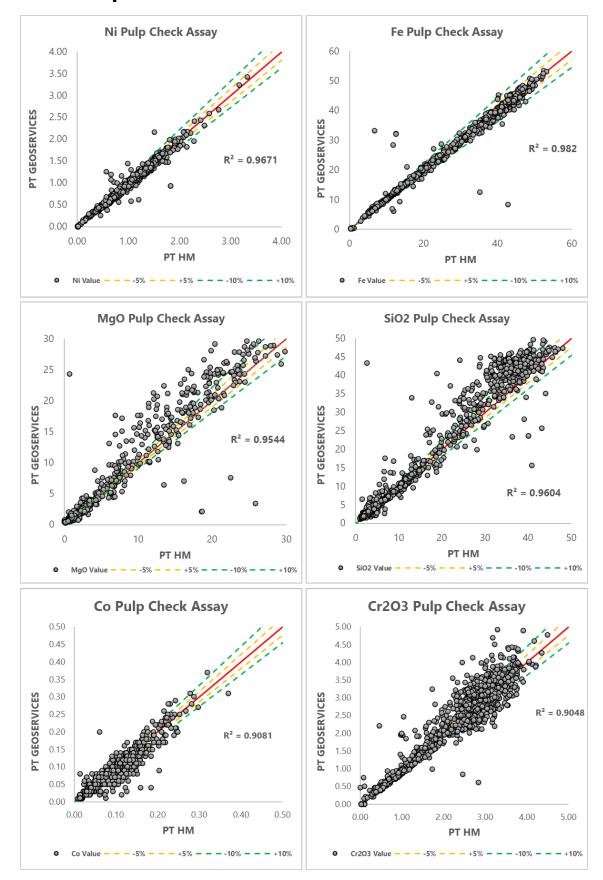






Figure 7 QAQC of CRM, OREAS193





Replicate Samples



Check Samples PT HM vs PT Tribhakti Inspektama

Figure 10 QAQC of check samples PT HM vs PT Tribhakti Inspektama

Check Samples PT HM vs PT Geoservices

Figure 11 QAQC of check samples PT HM vs PT Geoservices

APPENDIX 4

PT ERABARU TIMUR LESTARI BLOCKMODEL DOCUMENTATION

PT DANMAR EXPLORINDO

BLOCK MODEL DOCUMENTATION

FOR

PT ERABARU TIMUR LESTARI

18 JANUARI 2023

AUTHOR:

- 1. Adi Yogi Sugama
- 2. Agus Sutrisno
- 3. Harman Adhittyo
- 4. Yorris Wibriana

TABLE OF CONTENTS

TABLE OF CO	ONTENTS
LIST OF TABI	LES
LIST OF FIGL	JRES4
1. BLOCKN	ODEL DOCUMENTATION
1.1. Blo	ck Model Geometry6
1.2. Exti	rapolatory Data Analysis6
1.2.1.	Descriptive Statistics7
1.2.2.	Histogram
1.4. Var	iography17
1.4.1.	Variogram of Limonite17
1.4.2	Variogram of Saprolite
1.4.2.	Kriging Neighborhood Analysis (KNA)27
1.5. Gra	de Estimation32
1.6. Blo	ckmodel Validation
1.6.1.	Visual Validation
1.6.2.	Swath Plot
1.7. Res	source Estimation
1.7.1.	Grade Tonnage
1.7.2.	Resource Estimation

LIST OF TABLES

Table 1 Block model size and geometry	. 6
Table 2 Descriptive Statistics of Limonite	. 7
Table 3 Descriptive Statistics of Saprolite	. 7
Table 4 Summary of mineral correlation for Limonite	16
Table 5 Summary of mineral correlation for Saprolite	16
Table 6 KNA summary	31
Table 7 Search parameters of Limonite	32
Table 8 Search parameters of Saprolite	33
Table 9 Limonite estimated Resource breakdown	38
Table 10 Saprolite estimated Resource breakdown	39
Table 11 All nickel laterite estimated Resource breakdown	40
Table 12 Resource summary estimated for ETL Nickel Project	42

LIST OF FIGURES

Figure 1 Drilling location Map	6
Figure 2 Histogram of Limonite	8
Figure 3 Histogram of Saprolite	9
Figure 4 Mineral correlation scatter plot for Limonite	12
Figure 5 Mineral correlation scatter plot for Saprolite	15
Figure 6 Variogram of Limonite Ni	17
Figure 7 Variogram of Limonite Co	17
Figure 8 Variogram of Limonite Fe	18
Figure 9 Variogram of Limonite MgO	18
Figure 10 Variogram of Limonite SiO ₂	19
Figure 11 Variogram of Limonite Al ₂ O ₃	19
Figure 12 Variogram of Limonite Cr ₂ O ₃	20
Figure 13 Variogram of Limonite CaO	20
Figure 14 Variogram of Limonite MnO	21
Figure 15 Variogram of Saprolite Ni	22
Figure 16 Variogram of Saprolite Co	22
Figure 17 Variogram of Saprolite Fe	23
Figure 18 Variogram of Saprolite MgO	23
Figure 19 Variogram of Saprolite SiO ₂	24
Figure 20 Variogram of Saprolite Al ₂ O ₃	24
Figure 21 Variogram of Saprolite Cr ₂ O ₃	25
Figure 22 Variogram of Saprolite CaO	25
Figure 23 Variogram of Saprolite MnO	
Figure 24 KNA for optimum block model size in Block D	27
Figure 25 KNA for optimum discretization block in Block D	27
Figure 26 KNA for maximum samples Limonite in Block D	
Figure 27 KNA for minimum samples Limonite in Block D	
Figure 28 KNA for maximum samples Saprolite in Block D	
Figure 29 KNA for minimum samples Saprolite in Block D	

Figure 30 KNA for optimum horizontal search Limonite in Block D	. 30
Figure 31 KNA for optimum vertical search Limonite in Block D	. 30
Figure 32 KNA for optimum horizontal search Saprolite in Block D	. 31
Figure 33 KNA for optimum vertical search Saprolite in Block D	. 31
Figure 34 Visual validation for Ni Limonite	. 34
Figure 35 Visual validation for Ni Saprolite	. 34
Figure 36 Swath plot of Ni Limonite – Easting	. 35
Figure 37 Swath plot of Ni Limonite – Northing	. 35
Figure 38 Swath plot of Ni Limonite – Elevation	. 36
Figure 39 Swath plot of Ni Saprolite – Easting	. 36
Figure 40 Swath plot of Ni Saprolite – Northing	. 37
Figure 41 Swath plot of Ni Saprolite – Elevation	. 37
Figure 42 Grade Tonnage of Limonite	. 41
Figure 43 Grade Tonnage of Saprolite	. 41

1. BLOCKMODEL DOCUMENTATION

1.1. Block Model Geometry

Table 1 Block model size and geometry

Туре	Y	Х	Z
Minimum Coordinates	9680837.833	363039.909	302.322
Maximum Coordinates	9683087.833	367714.909	672.322
User Block Size	25	25	1
Min. Block Size	25	25	1
Rotation	0	0	0

1.2. Extrapolatory Data Analysis

PT ETL only has one domain based on topography and drill point distribution with a majority of 50 meters spacing and some drill holes have 100 meters spacing.

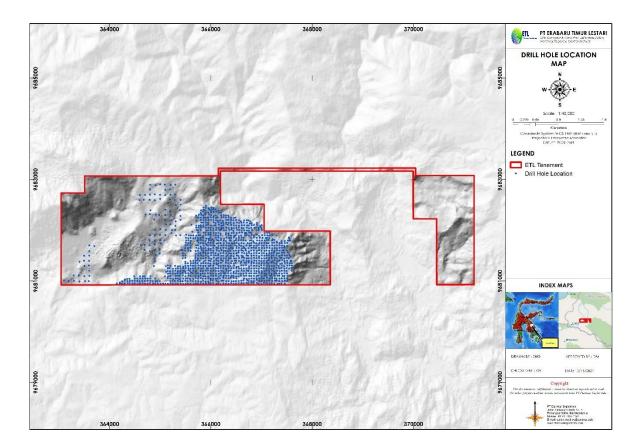


Figure 1 Drilling location Map

1.2.1. Descriptive Statistics

Variable	Ni	Fe	Со	MgO	SiO2	Cr2O3
No. of Sample	25,113	25,113	25,113	25,113	25,113	25,113
Length	25,101.32	25,101.32	25,101.32	25,101.32	25,101.32	25,101.32
Mean	1.05	41.06	0.11	1.74	6.33	2.88
SD	0.30	5.42	0.05	1.55	6.94	0.57
CV	0.29	0.13	0.49	0.89	1.10	0.20
Variance	0.09	29.42	0.00	2.40	48.15	0.32
Minimum	0.08	5.02	0.001	0.01	0.01	0.01
Q1	0.83	38.63	0.075	0.83	1.95	2.57
Q2	1.04	42.76	0.102	1.14	2.96	2.94
Q3	1.25	44.92	0.134	2.03	7.92	3.25
Maximum	3.49	52.05	0.892	23.49	59.83	6.16

Table 2 Descriptive Statistics of Limonite

Table 3 Descriptive Statistics of Saprolite

Variable	Ni	Fe	Со	MgO	SiO2	Cr2O3
No. of Sample	4,688	4,688	4,688	4,688	4,688	4,688
Length	4,626.42	4,626.42	4,626.42	4,626.42	4,626.42	4,626.42
Mean	1.32	17.62	0.04	12.33	35.15	1.38
SD	0.57	6.26	0.02	5.77	7.16	0.49
CV	0.43	0.36	0.44	0.47	0.20	0.35
Variance	0.32	39.13	0.00	33.28	51.24	0.24
Minimum	0.1	4.78	0.012	0.11	11.48	0.01
Q1	0.93	12.91	0.028	7.76	30.38	1.03
Q2	1.24	17.01	0.037	11.87	35.27	1.36
Q3	1.62	22.07	0.05	16.18	39.29	1.71
Maximum	7.41	40.61	0.248	39.1	77.16	3.91

Figure 2 Histogram of Limonite

3 Cr2O3

Co

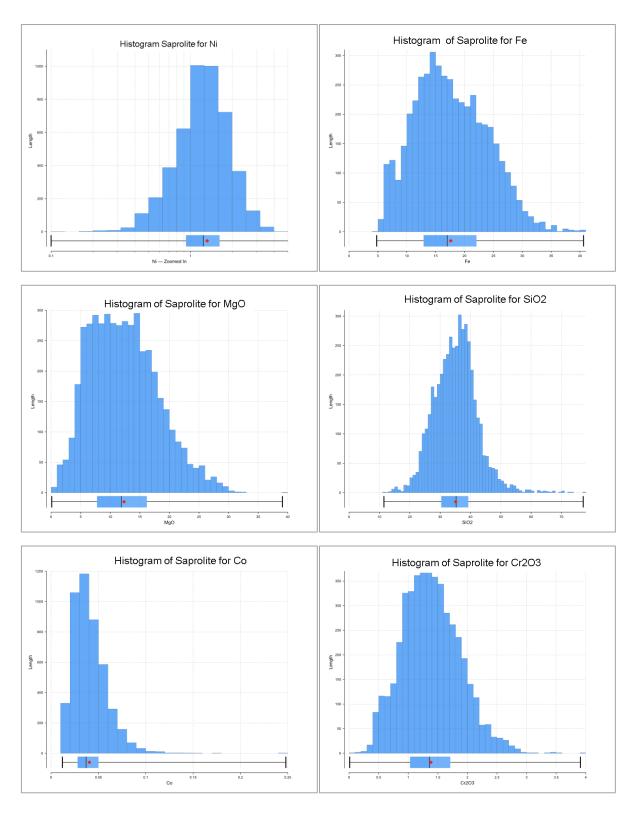
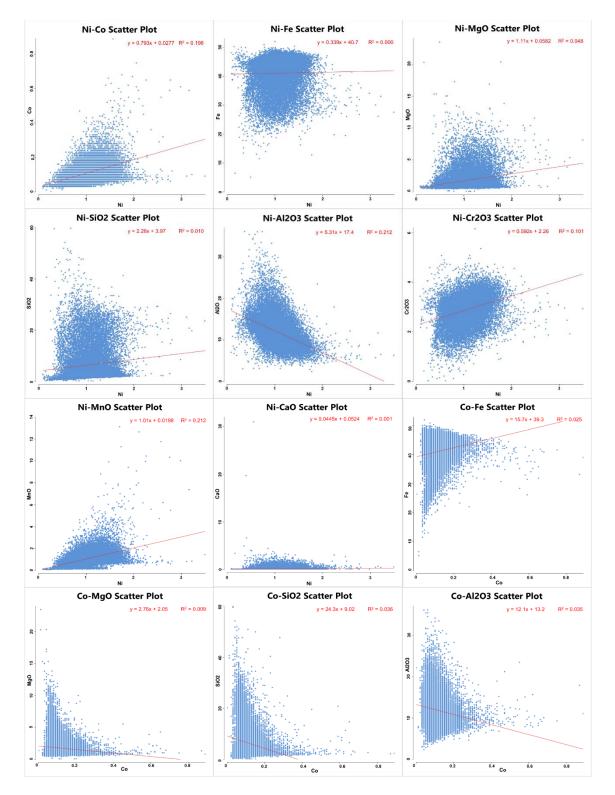
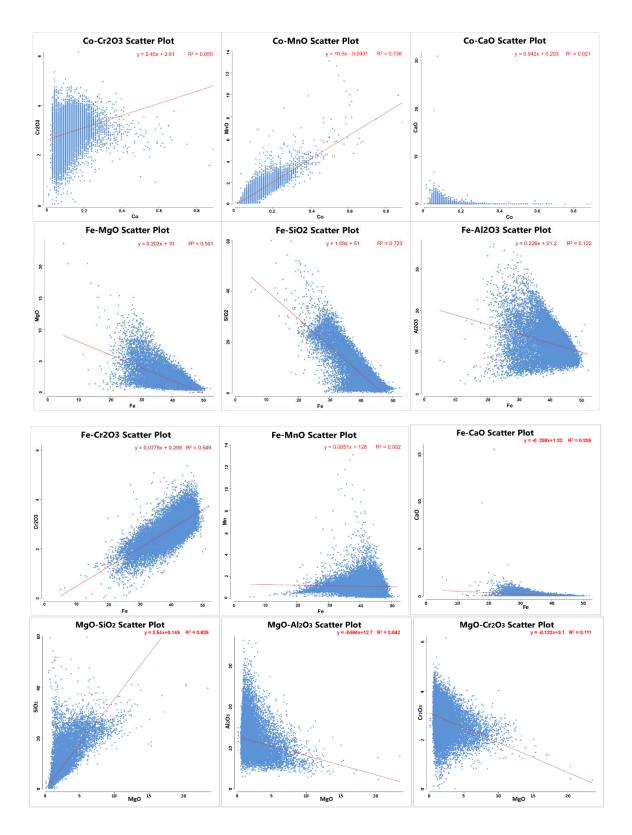




Figure 3 Histogram of Saprolite

Mineral Correlation

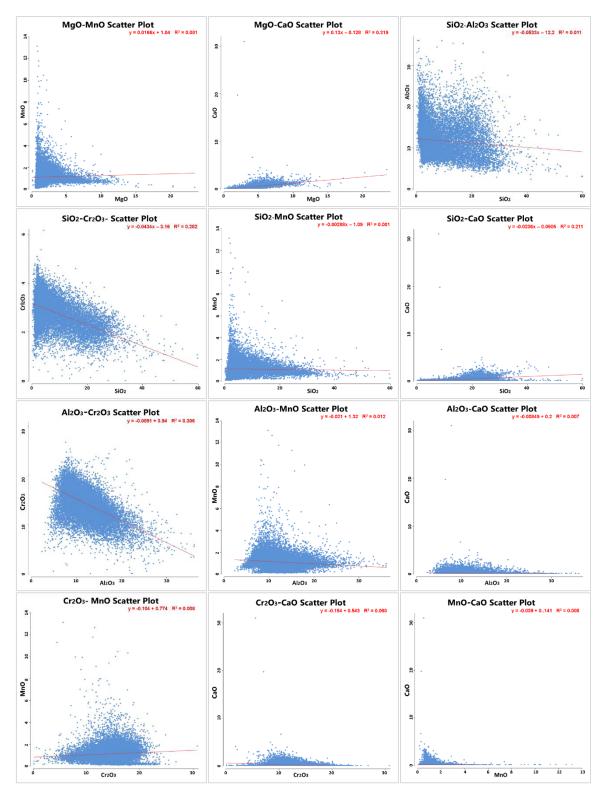
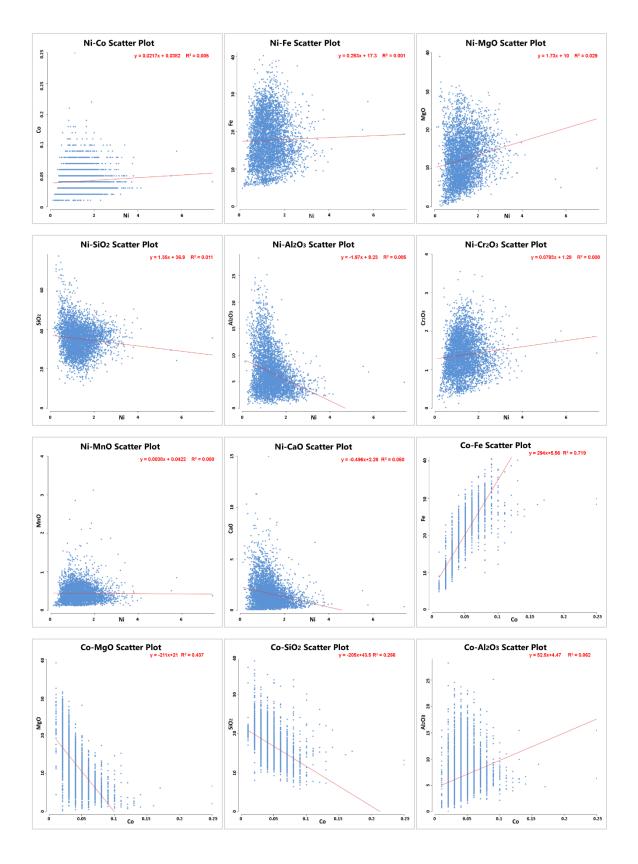
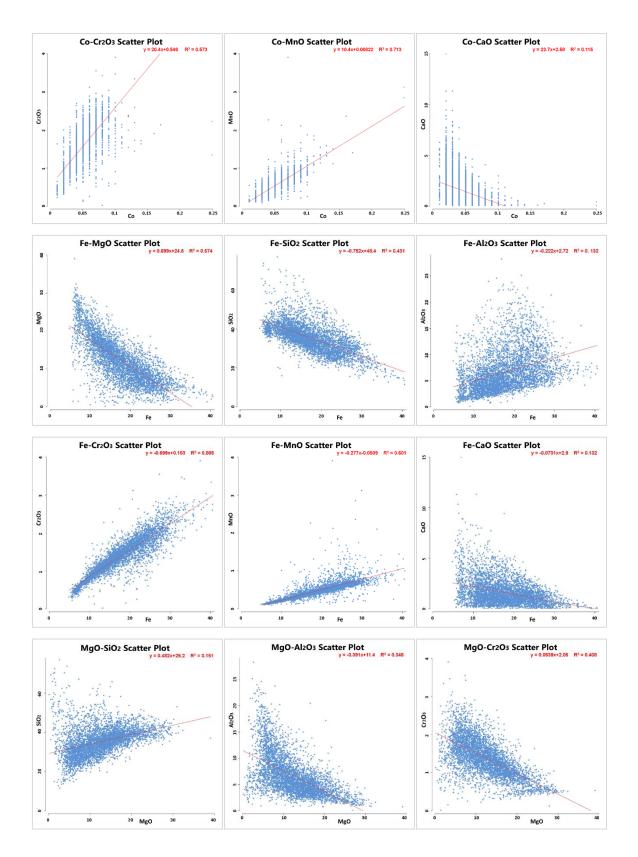




Figure 4 Mineral correlation scatter plot for Limonite

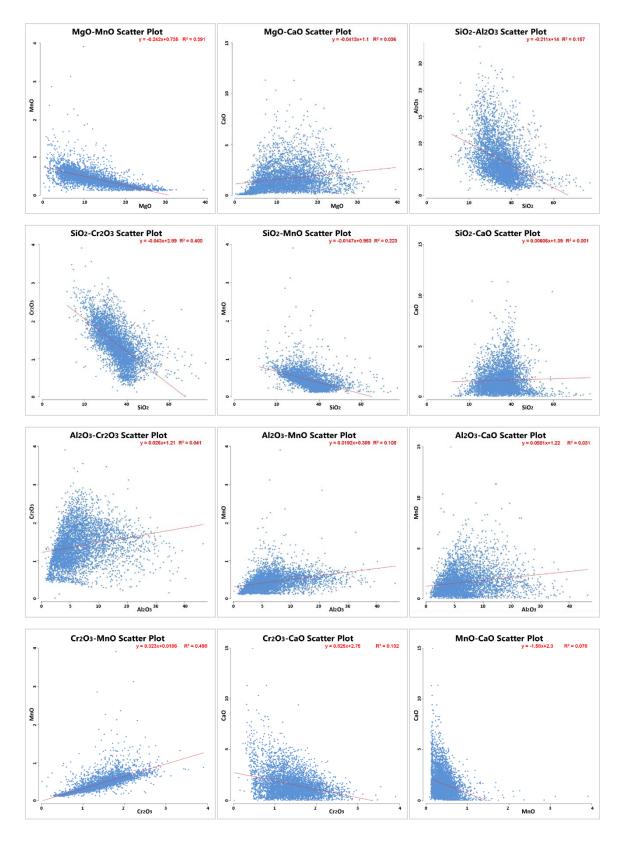


Figure 5 Mineral correlation scatter plot for Saprolite

Limonite	Ni	Со	Fe	MgO	SiO ₂	Al ₂ O ₃	Cr ₂ O ₃	MnO	CaO
Ni	1.000								
Co	0.198	1.000							
Fe	0.000	0.025	1.000						
MgO	0.048	-0.009	-0.501	1.000					
SiO ₂	0.010	-0.036	-0.723	0.626	1.000				
Al ₂ O ₃	-0.212	-0.035	-0.122	-0.042	-0.011	1.000			
Cr ₂ O ₃	0.101	0.055	0.549	-0.111	-0.282	-0.306	1.000		
MnO	0.212	0.738	-0.002	0.001	-0.001	-0.012	0.008	1.000	
CaO	0.001	-0.021	-0.205	0.319	0.211	-0.007	-0.060	-0.005	1.000

Table 4 Summary of mineral correlation for Limonite

Table 5 Summary of mineral correlation for Saprolite

Saprolite	Ni	Со	Fe	MgO	SiO ₂	Al ₂ O ₃	Cr ₂ O ₃	MnO	CaO
Ni	1.000								
Co	0.005	1.000							
Fe	0.001	0.719	1.000						
MgO	0.029	-0.437	-0.574	1.000					
SiO ₂	-0.011	-0.266	-0.431	0.151	1.000				
Al ₂ O ₃	-0.085	0.062	0.132	-0.348	-0.157	1.000			
Cr ₂ O ₃	0.008	0.573	0.805	-0.408	-0.400	0.041	1.000		
MnO	0.000	0.713	0.601	-0.391	-0.223	0.108	0.498	1.000	
CaO	-0.050	-0.115	-0.132	0.036	0.001	0.031	-0.102	-0.078	1.000

1.4. Variography

1.4.1. Variogram of Limonite

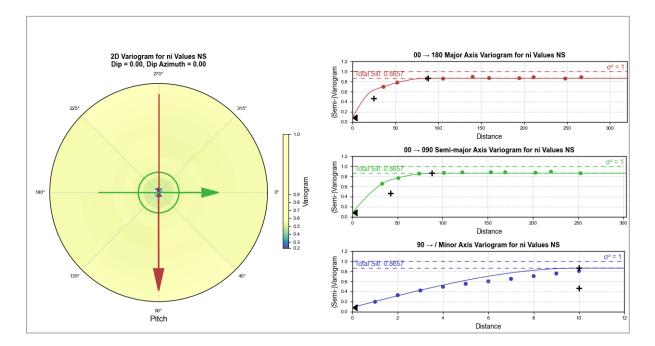


Figure 6 Variogram of Limonite Ni

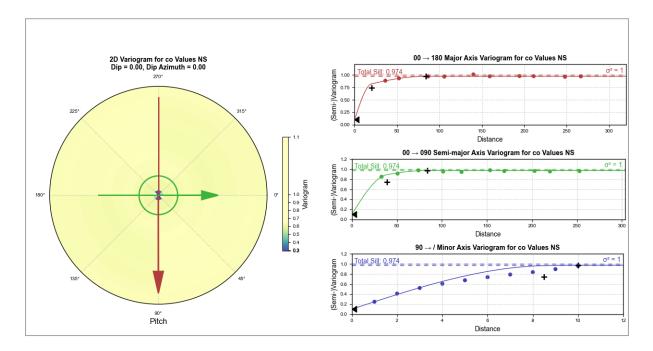


Figure 7 Variogram of Limonite Co

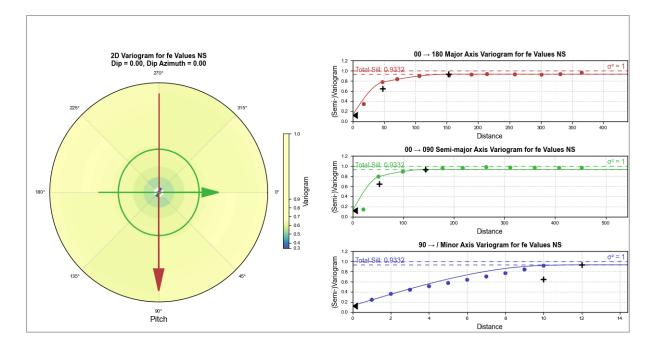


Figure 8 Variogram of Limonite Fe

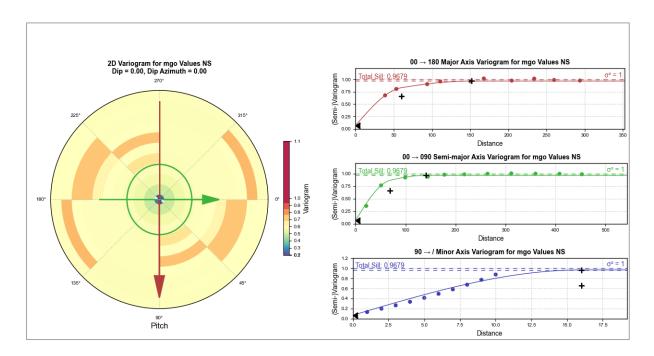
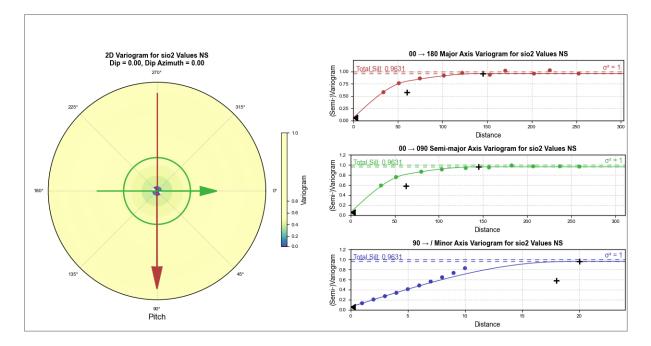
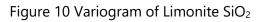




Figure 9 Variogram of Limonite MgO

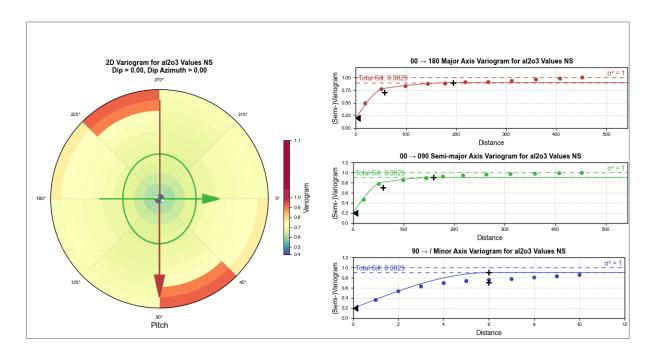


Figure 11 Variogram of Limonite Al₂O₃

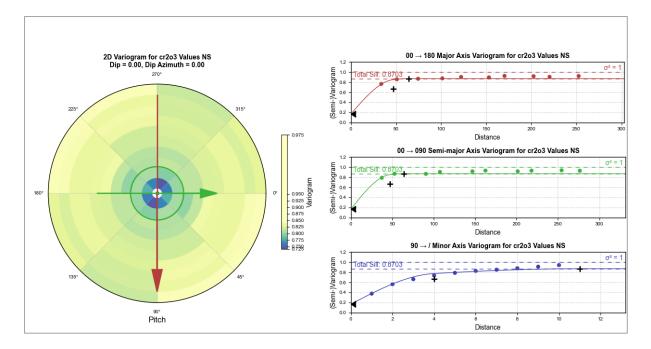
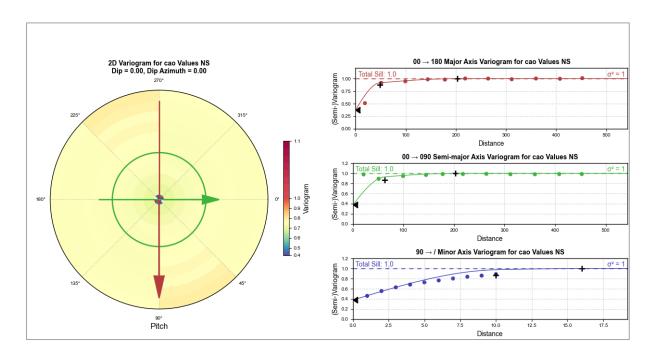



Figure 12 Variogram of Limonite Cr₂O₃

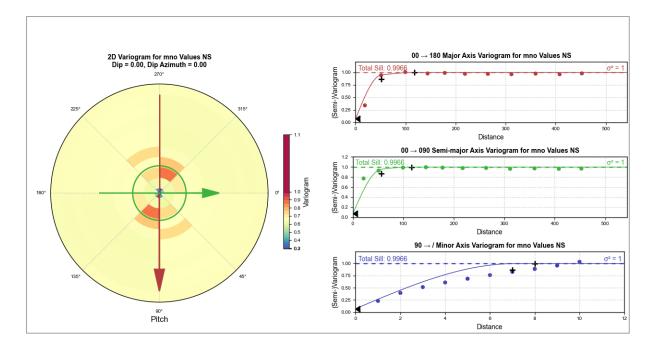


Figure 14 Variogram of Limonite MnO

1.4.2 Variogram of Saprolite

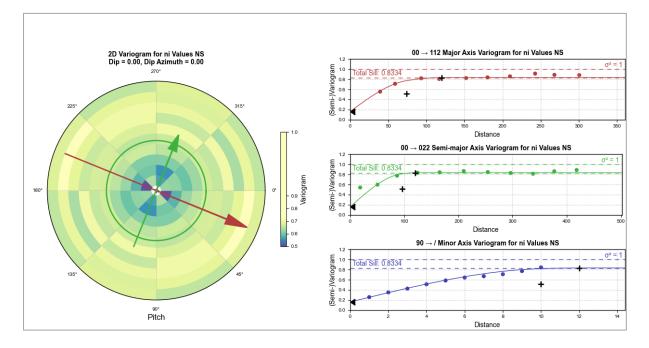


Figure 15 Variogram of Saprolite Ni

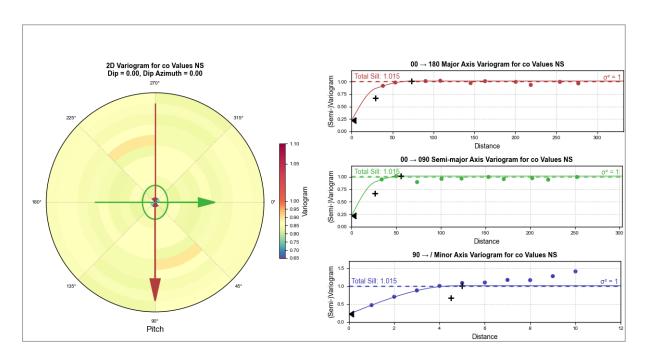
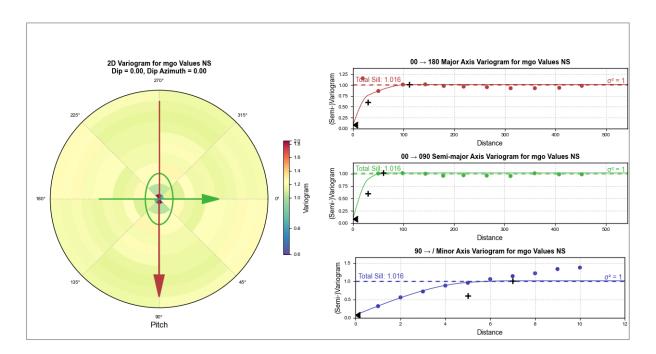
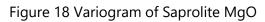
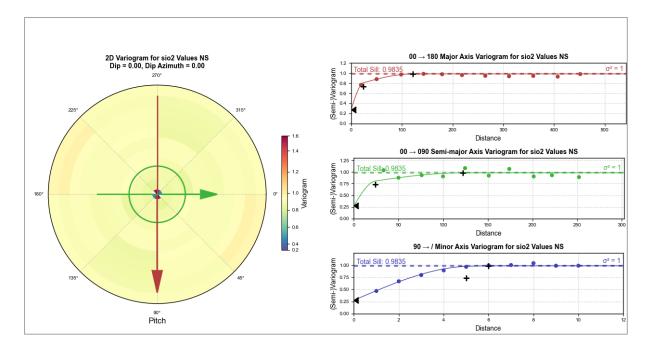
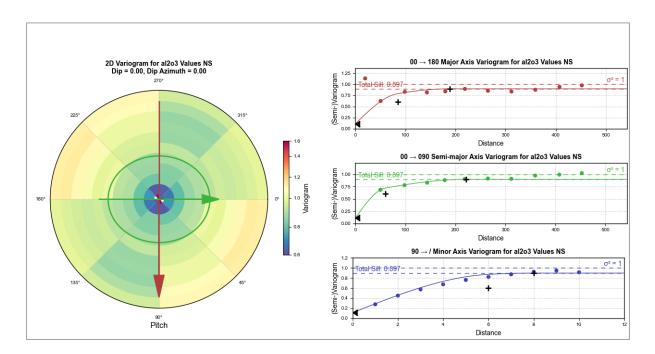
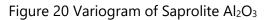
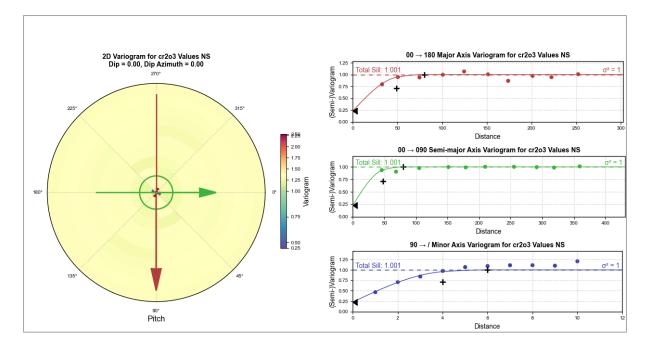


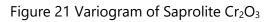
Figure 16 Variogram of Saprolite Co


Figure 17 Variogram of Saprolite Fe







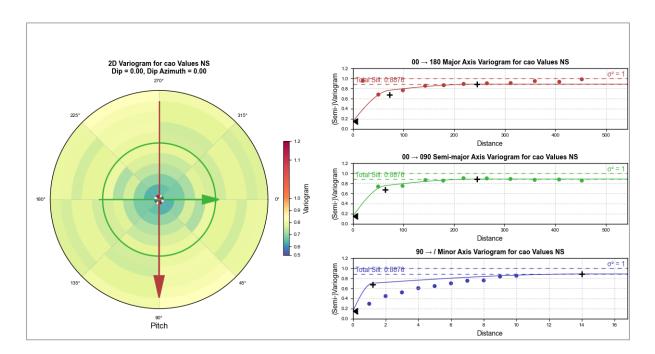


Figure 22 Variogram of Saprolite CaO

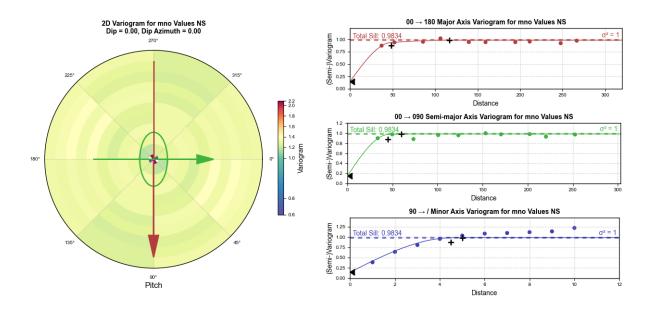


Figure 23 Variogram of Saprolite MnO

1.4.2. Kriging Neighborhood Analysis (KNA)

Figure 24 KNA for optimum block model size in Block D

Figure 25 KNA for optimum discretization block in Block D

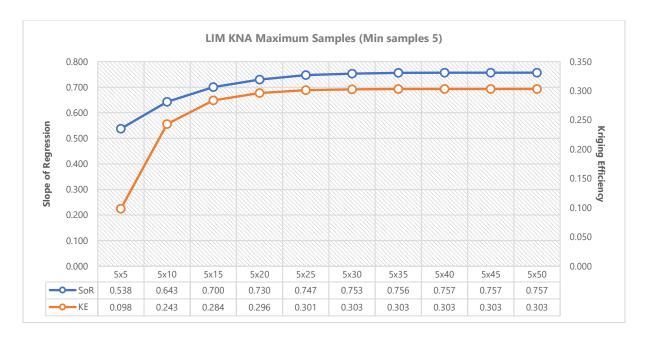


Figure 26 KNA for maximum samples Limonite in Block D

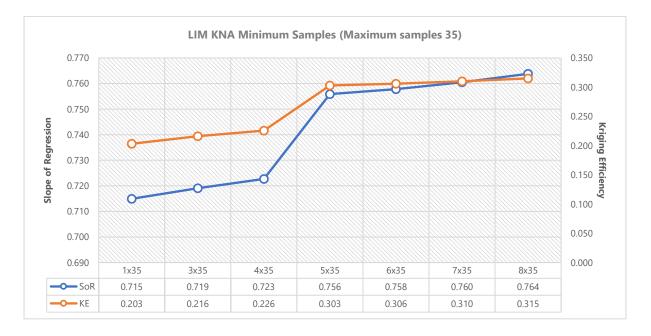


Figure 27 KNA for minimum samples Limonite in Block D

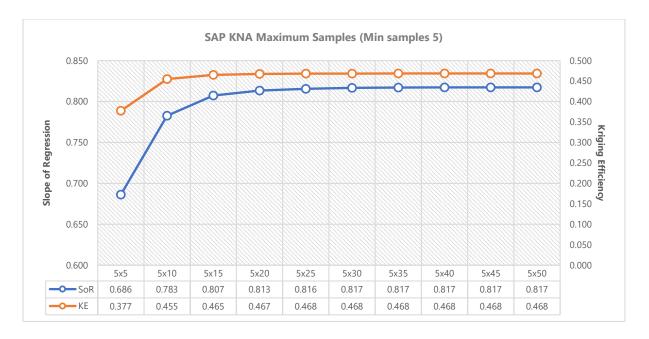


Figure 28 KNA for maximum samples Saprolite in Block D

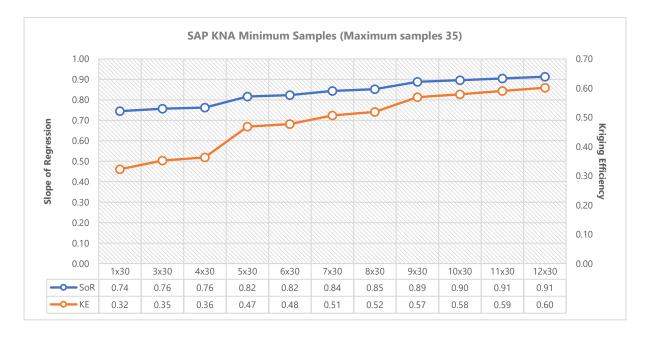


Figure 29 KNA for minimum samples Saprolite in Block D

Figure 30 KNA for optimum horizontal search Limonite in Block D

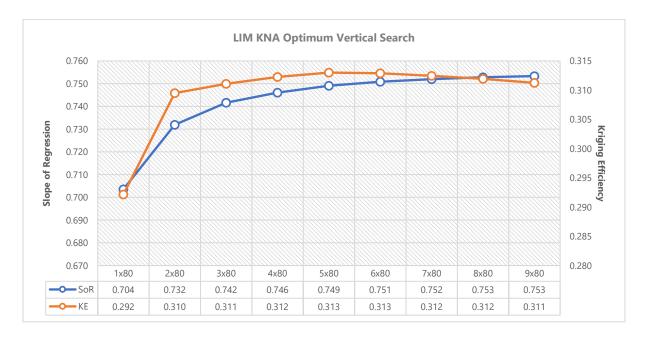


Figure 31 KNA for optimum vertical search Limonite in Block D

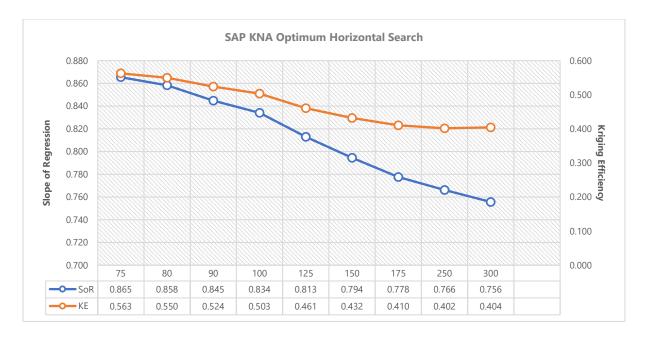


Figure 32 KNA for optimum horizontal search Saprolite in Block D

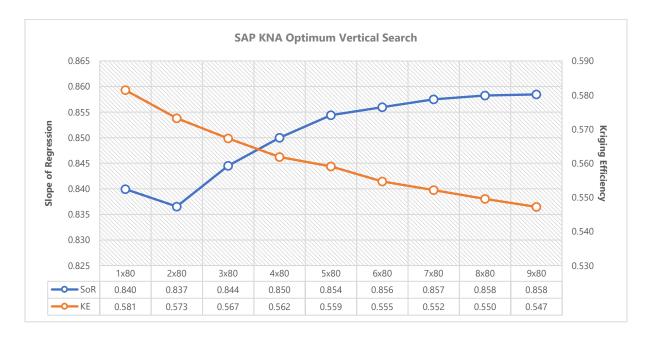


Figure 33 KNA for optimum vertical search Saprolite in Block D

Parameter	Limonite	Saprolite
Block Size	25x2	25x1
Discretization Block	5x5	ōx4
Max. Horizontal Search	80	80
Max. Samples	30	30
Max. Vertical Search	5	4

1.5. Grade Estimation

		Ni			Со			Fe			MgO			SiO2			AI2O3			Cr2O3			CaO			MnO	
Parameter	Pass 1	Pass 2	Pass 3	Pass 1	Pass 2	Pass 3	Pass 1	Pass 2	Pass 3	Pass 1	Pass 2	Pass 3	Pass 1	Pass 2	Pass 3	Pass 1	Pass 2	Pass 3	Pass 1	Pass 2	Pass 3	Pass 1	Pass 2	Pass 3	Pass 1	Pass 2	Pass 3
Minimum Sample	5	3	1	5	3	1	5	3	1	5	3	1	5	3	1	5	3	1	5	3	1	5	3	1	5	3	1
Maximum Sample	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
Max. Search Radius	80	160	320	80	160	320	80	160	320	80	160	320	80	160	320	80	160	320	80	160	320	80	160	320	80	160	320
Max. Vertical Distance	5	10	20	5	10	20	5	10	20	5	10	20	5	10	20	5	10	20	5	10	20	5	10	20	5	10	20
Dip		0			0			0			0			0			0			0			0			0	
Dip Azimuth		0			0			0			0			0			0			0			0			0	
Pitch		90			90			90			90			90			90			90			90			90	
Major/Semi- major 1		0.595			0.513			0.906			0.870			0.950			0.966			1.000			0.762			0.911	
Major/Semi- major 2		1.000			1.000			1.063			1.078			1.000			1.220			1.000			1.000			1.017	
Major/Minor 1		2.500			2.353			4.800			3.750			3.324			9.500			11.750			4.800			7.286	
Major/Minor 2		8.800			8.400			12.750			9.500			7.250			32.333			5.818			12.688			14.750	
Nugget		0.086			0.101			0.127			0.070			0.058			0.196			0.168			0.378			0.071	
Structure 1		0.383			0.639			0.518			0.591			0.523			0.509			0.504			0.495			0.795	
Structure 2		0.397			0.234			0.289			0.307			0.382			0.197			0.199			0.128			0.130	
Range 1		25			20			48			60			59.83			57			47			48			51	
Range 2		88			84			153			152			145			194			64			203			118	
Block Discretization	!	5 X 5 X 4	4	ļ	5 X 5 X 4	4	ļ	5 X 5 X 4 5 X 5 X 4		5 X 5 X 4 5 X 5 X 4		5 X 5 X 4		4		5 X 5 X 4	4	ļ	5 X 5 X 4	1							
Drillhole Limit		4			4			4			4			4			4			4			4			4	

Table 7 Search parameters of Limonite

		Ni			Со			Fe			MgO			SiO2			AI2O3			Cr2O3	;		CaO			MnO	
Parameter	Pass 1	Pass 2	Pass 3																								
Minimum Sample	5	3	1	5	3	1	5	3	1	5	3	1	5	3	1	5	3	1	5	3	1	5	3	1	5	3	1
Maximum Sample	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
Max. Search Radius	80	160	320	80	160	320	80	160	320	80	160	320	80	160	320	80	160	320	80	160	320	80	160	320	80	160	320
Max. Vertical Distance	4	8	16	4	8	16	4	8	16	4	8	16	4	8	16	4	8	16	4	8	16	4	8	16	4	8	16
Dip		0			0			0			0			0			0			0			0			0	
Dip Azimuth		0			0			0			0			0			0			0			0			0	
Pitch		22			90			90			90			90			90			90			90			90	
Major/Semi- major 1		0.771			1.115			1.000			1.000			1.000			1.419			1.021			1.125			1.074	
Major/Semi- major 2		1.000			1.327			1.183			1.850			1.000			0.851			1.000			1.000			1.950	
Major/Minor 1		7.400			6.444			7.750			6.000			4.800			14.167			12.250			60.000			10.744	
Major/Minor 2		10.000			14.600			19.400			15.857			20.333			23.500			13.333			17.500			23.400	
Nugget		0.161			0.221			0.100			0.081			0.276			0.111			0.234			0.152			0.146	
Structure 1		0.356			0.445			0.637			0.521			0.458			0.494			0.477			0.525			0.727	
Structure 2		0.317			0.349			0.300			0.414			0.250			0.292			0.290			0.211			0.110	
Range 1		74			29			31			30			24			85			49			72			48.35	
Range 2		120			73			97			111			122			188			80			245			117	
Block Discretization	1	5 X 5 X 4	4		5 X 5 X 4	4		5 X 5 X 4	4		5 X 5 X 4	4	!	5 X 5 X 4	4		5 X 5 X 4	1	L.	5 X 5 X 4	4	1	5 X 5 X 4	4	!	5 X 5 X 4	4
Drillhole Limit		4			4			4			4			4			4			4			4			4	

Table 8 Search parameters of Saprolite

1.6. Blockmodel Validation

1.6.1. Visual Validation

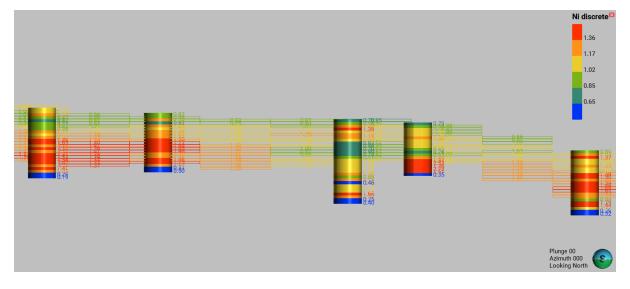


Figure 34 Visual validation for Ni Limonite

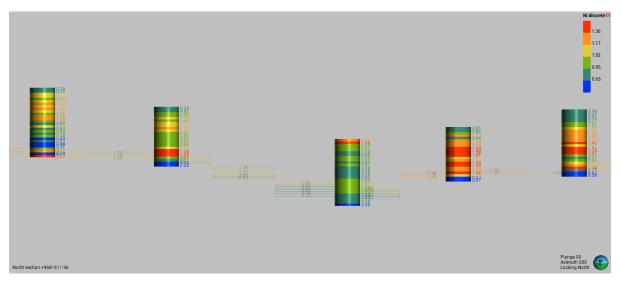
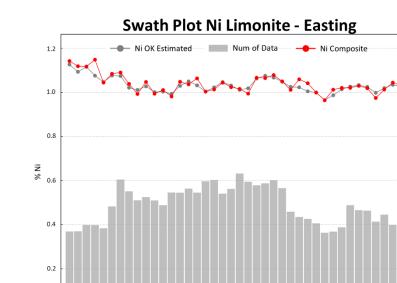


Figure 35 Visual validation for Ni Saprolite

3.0

2.5

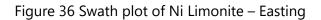

2.0 (suoillim)

) Num of Data

1.0

0.5

367461.7 367511.7



1.6.2. Swath Plot

365511.7

365711.7

365961.7

366461.7

366211.7

366711.7

366961.7

367211.7

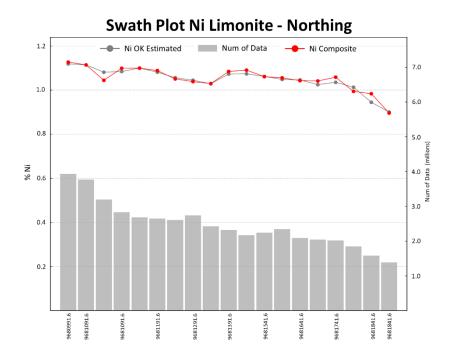


Figure 37 Swath plot of Ni Limonite – Northing

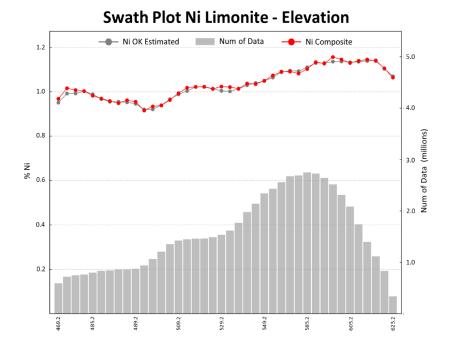


Figure 38 Swath plot of Ni Limonite – Elevation

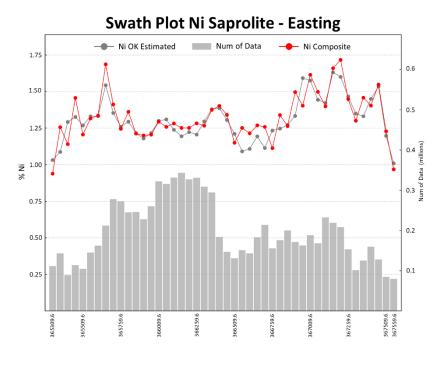


Figure 39 Swath plot of Ni Saprolite – Easting

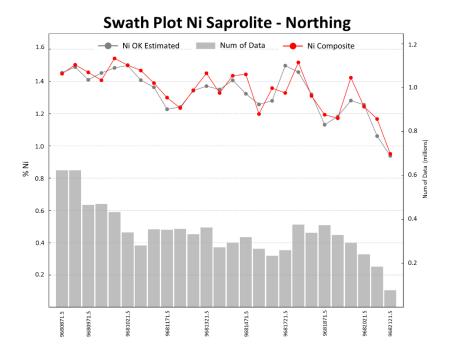


Figure 40 Swath plot of Ni Saprolite – Northing

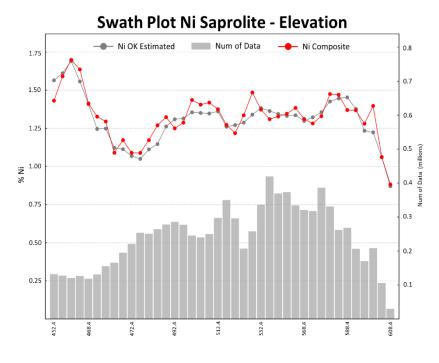
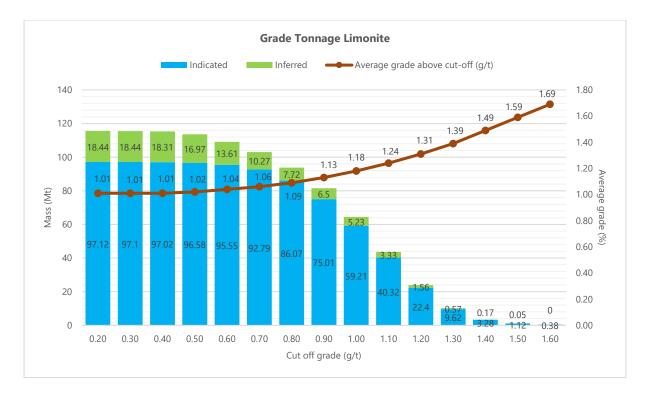


Figure 41 Swath plot of Ni Saprolite – Elevation

1.7. Resource Estimation

1.7.1. Grade Tonnage

	LIMONITE - GLOBAL MINERAL RESOURCE ESTIMATE														
GRADE CUT-	MINERAL RESOURCE					-	XRF (DRY AN	ALYSIS)	-	-	_	Relative			
OFF RANGE	MILLION TONNES (Wet)	Ni %	Co %	Fe %	MgO %	SiO2 %	SM Ratio	AI2O3 %	Cr2O3 %	CaO %	MnO %	Density (sg Wet)			
≥0.2	115.56	1.01	0.11	40.54	7.24	1.87	0.26	11.83	2.83	0.11	1.03	1.76			
≥0.3	115.55	1.01	0.11	40.54	7.24	1.87	0.26	11.83	2.83	0.11	1.03	1.76			
≥0.4	115.33	1.01	0.11	40.55	7.24	1.88	0.26	11.82	2.83	0.11	1.03	1.76			
≥0.5	113.55	1.02	0.11	40.63	7.13	1.87	0.26	11.78	2.85	0.11	1.04	1.76			
≥0.6	109.16	1.04	0.11	40.80	6.91	1.86	0.27	11.70	2.87	0.11	1.06	1.76			
≥0.7	103.06	1.06	0.11	40.93	6.74	1.85	0.27	11.61	2.89	0.10	1.08	1.76			
≥0.8	93.79	1.09	0.11	40.97	6.67	1.86	0.28	11.52	2.91	0.10	1.12	1.76			
≥0.9	81.51	1.13	0.12	40.86	6.84	1.91	0.28	11.40	2.92	0.10	1.16	1.76			
≥1.0	64.44	1.18	0.12	40.70	7.09	2.00	0.28	11.22	2.94	0.11	1.21	1.76			
≥1.1	43.66	1.24	0.12	40.53	7.41	2.10	0.28	10.96	2.97	0.12	1.27	1.76			
≥1.2	23.95	1.31	0.13	40.13	8.10	2.30	0.28	10.63	2.99	0.13	1.34	1.76			
≥1.3	10.19	1.39	0.13	39.61	9.09	2.57	0.28	10.16	3.01	0.14	1.39	1.76			
≥1.4	3.46	1.49	0.13	38.81	10.43	2.96	0.28	9.65	2.99	0.17	1.43	1.76			
≥1.5	1.16	1.59	0.13	37.86	11.90	3.34	0.28	9.22	2.96	0.18	1.48	1.76			
≥1.6	0.39	1.69	0.13	36.69	13.44	3.75	0.28	8.92	2.88	0.21	1.52	1.76			
≥1.7	0.14	1.79	0.13	36.32	14.18	3.92	0.28	8.61	2.86	0.21	1.54	1.76			
≥1.8	0.04	1.91	0.13	35.44	15.69	4.26	0.27	8.14	2.82	0.23	1.50	1.76			
≥1.9	0.02	1.99	0.13	35.60	15.41	4.08	0.27	8.32	2.76	0.20	1.62	1.76			


Table 9 Limonite estimated Resource breakdown

				S	APROLITE - (GLOBAL MI	NERAL RESOU	RCE ESTIMATE					
	MINERAL RESOURCE	XRF (DRY ANALYSIS)											
GRADE CUT- OFF RANGE	MILLION TONNES (Wet)	Ni %	Co %	Fe %	MgO %	SiO2 %	SM Ratio	AI2O3 %	Cr2O3 %	CaO %	MnO %	Density (sg Wet)	
≥0.2	19.01	1.23	0.04	17.33	12.69	35.68	2.81	6.43	1.36	1.57	0.43	1.6	
≥0.3	19.01	1.23	0.04	17.33	12.69	35.68	2.81	6.43	1.36	1.57	0.43	1.6	
≥0.4	19.01	1.23	0.04	17.33	12.68	35.68	2.81	6.43	1.36	1.57	0.43	1.6	
≥0.5	18.91	1.23	0.04	17.33	12.70	35.68	2.81	6.41	1.36	1.57	0.43	1.6	
≥0.6	18.44	1.25	0.04	17.34	12.73	35.64	2.80	6.36	1.36	1.56	0.43	1.6	
≥0.7	17.65	1.28	0.04	17.34	12.81	35.54	2.78	6.31	1.36	1.56	0.43	1.6	
≥0.8	16.51	1.31	0.04	17.33	12.86	35.50	2.76	6.27	1.37	1.56	0.43	1.6	
≥0.9	14.84	1.36	0.04	17.35	12.91	35.31	2.73	6.25	1.37	1.56	0.43	1.6	
≥1.0	13.10	1.42	0.04	17.33	13.00	35.19	2.71	6.22	1.37	1.56	0.43	1.6	
≥1.1	11.22	1.48	0.04	17.27	13.15	35.14	2.67	6.13	1.37	1.54	0.43	1.6	
≥1.2	9.31	1.55	0.04	17.21	13.32	35.15	2.64	5.95	1.36	1.51	0.43	1.6	
≥1.3	7.47	1.62	0.04	17.14	13.51	35.20	2.61	5.75	1.36	1.46	0.43	1.6	
≥1.4	5.61	1.71	0.04	17.05	13.70	35.33	2.58	5.51	1.36	1.40	0.43	1.6	
≥1.5	4.18	1.80	0.04	17.05	13.84	35.39	2.56	5.29	1.36	1.33	0.43	1.6	
≥1.6	3.05	1.90	0.04	16.98	14.05	35.51	2.53	5.05	1.36	1.27	0.43	1.6	
≥1.7	2.24	1.99	0.04	17.01	14.14	35.60	2.52	4.90	1.37	1.23	0.43	1.6	
≥1.8	1.63	2.08	0.04	16.98	14.25	35.81	2.51	4.75	1.36	1.17	0.43	1.6	
≥1.9	1.15	2.18	0.04	17.00	14.23	36.05	2.53	4.59	1.37	1.10	0.44	1.6	

Table 10 Saprolite estimated Resource breakdown

	LIMONITE AND SAPROLITE - GLOBAL MINERAL RESOURCE ESTIMATE MINERAL														
	MINERAL RESOURCE						XRF (DRY AN/	ALYSIS)				Relative			
GRADE CUT- OFF RANGE	MILLION TONNES (Wet)	Ni %	Co %	Fe %	MgO %	SiO2 %	SM Ratio	AI2O3 %	Cr2O3 %	CaO %	MnO %	Density (sg Wet)			
≥0.2	134.57	1.04	0.10	37.26	8.01	6.65	0.83	11.07	2.62	0.32	0.95	1.74			
≥0.3	134.56	1.04	0.10	37.26	8.01	6.65	0.83	11.07	2.62	0.32	0.95	1.74			
≥0.4	134.34	1.04	0.10	37.26	8.01	6.66	0.83	11.06	2.63	0.32	0.95	1.74			
≥0.5	132.46	1.05	0.10	37.30	7.93	6.70	0.85	11.01	2.63	0.32	0.95	1.74			
≥0.6	127.60	1.07	0.10	37.41	7.75	6.74	0.87	10.93	2.65	0.32	0.97	1.74			
≥0.7	120.71	1.09	0.10	37.48	7.63	6.78	0.89	10.84	2.67	0.32	0.99	1.74			
≥0.8	110.30	1.13	0.10	37.43	7.60	6.90	0.91	10.73	2.68	0.32	1.01	1.74			
≥0.9	96.35	1.17	0.10	37.24	7.77	7.06	0.91	10.61	2.68	0.33	1.04	1.74			
≥1.0	77.54	1.22	0.11	36.75	8.09	7.60	0.94	10.38	2.68	0.36	1.08	1.73			
≥1.1	54.88	1.29	0.11	35.77	8.58	8.86	1.03	9.97	2.64	0.41	1.10	1.73			
≥1.2	33.26	1.38	0.10	33.72	9.56	11.49	1.20	9.32	2.54	0.51	1.08	1.72			
≥1.3	17.66	1.49	0.09	30.10	10.96	16.38	1.49	8.29	2.31	0.70	0.98	1.69			
≥1.4	9.07	1.63	0.08	25.35	12.45	22.99	1.85	7.09	1.98	0.93	0.81	1.66			
≥1.5	5.34	1.76	0.06	21.57	13.42	28.43	2.12	6.15	1.71	1.08	0.66	1.63			
≥1.6	3.43	1.88	0.05	19.19	13.98	31.94	2.28	5.48	1.53	1.15	0.55	1.62			
≥1.7	2.38	1.98	0.05	18.13	14.14	33.76	2.39	5.11	1.45	1.17	0.50	1.61			
≥1.8	1.67	2.08	0.05	17.44	14.29	35.02	2.45	4.84	1.40	1.15	0.46	1.60			
≥1.9	1.17	2.17	0.05	17.28	14.25	35.57	2.50	4.64	1.39	1.09	0.45	1.60			

Table 11 All nickel laterite estimated Resource breakdown

Figure 42 Grade Tonnage of Limonite

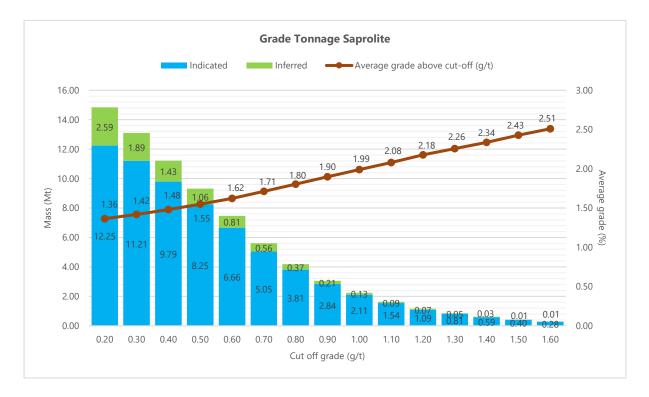


Figure 43 Grade Tonnage of Saprolite

1.7.2. Resource Estimation

Layer	Category	Mass	Ni	Co	Fe	SiO2	MgO	Cr2O3	AI2O3	MnO	CaO	Material Content Ni
		Mt	%	%	%	%	%	%	%	%	%	Mt
	Indicated	86.07	1.09	0.11	40.97	6.60	1.85	2.91	11.56	1.12	0.10	0.94
LIM (CoG 0.8%)	Inferred	7.72	1.07	0.11	40.92	7.50	2.02	2.94	11.03	1.08	0.13	0.08
0.0%)	Total	93.79	1.09	0.11	40.97	6.67	1.86	2.91	11.52	1.12	0.10	1.03
	Indicated	6.66	1.63	0.04	17.11	35.07	13.55	1.36	5.79	0.42	1.48	0.11
SAP (CoG 1.3%)	Inferred	0.81	1.54	0.04	17.45	36.33	13.22	1.37	5.34	0.46	1.27	0.01
1.5 %)	Total	7.47	1.62	0.04	17.14	35.20	13.51	1.36	5.75	0.43	1.46	0.12
	Indicated	92.73	1.13	0.10	39.26	8.64	2.69	2.80	11.15	1.07	0.20	1.05
Total	Inferred	8.53	1.11	0.10	38.69	10.24	3.08	2.79	10.49	1.02	0.24	0.10
	Total	101.26	1.13	0.10	39.21	8.77	2.72	2.80	11.09	1.07	0.20	1.15

Table 12 Resource summary estimated for ETL Nickel Project

APPENDIX 5

RESUME OF COMPETENT PERSONS AND CONTRIBUTING AUTHORS

DANIEL MADRE, MSc (GEOLOGY)

EXPLORATION SPECIALIST

Summary	Daniel Madre has been an Australian coal and mineral geologist since
Summary	1980, with full time work experience in Indonesia since 1988. He is
	specialist in exploration and for this reason is familiar with most coal and
	1 1
	mineral projects in the country since their earliest stage of development.
	He has a diverse network of professionals throughout the industry.
	Daniel has a Master of Science degree in Geology. Daniel Madre is a
	member of the Australasian Institute of Mining and Metallurgy (no:
	100878), the Australian Institute of Geoscientists (no: 5632), Ikatan Ahli
	Geologi Indonesia (no: 5000) and Masyarakat Geologi, Ekonomi
	Indonesia (no: B-0718). Daniel is a Competent Person in Indonesia for
	KCMI Code for Coal Resources.
	Reivin Code for Coal Resources.
	Daniel runs a successful exploration consultancy and has in-house
	capabilities that range from geology, geophysics, drilling, geological
	modelling, mine design and planning. The company has discovered coal
	in East Kalimantan and Sumatra which has resulted in numerous coal
	mine developments. The company is formally registered by the

Since 2005, the company diversified into nickel and mineral sands exploration and resource development. This work resulted in the development of the first nickel mine in Kalimantan. Other nickel projects investigated by the company are located in Sulawesi, Halmahera and Papua. Mineral sands projects have been investigated in Sumatra and Papua.

Indonesian Department of Minerals and Energy to carry out exploration

Commodities Coal, oil shale, nickel laterites, phosphate, gold, manganese and mineral sands

surveys and report coal and mineral resources.

Countries Indonesia, Australia, USA, PNG, Kenya

Experience	Nov, 2000 - present	PT Danmar Explorindo	Jakarta, Indonesia
	Managing Directo	r	
	1996–Nov 2000	Independent Consultant	Jakarta, Indonesia
	Consultant Geologi	st	
	1988–1996	PT Petrosea	Jakarta, Indonesia
	Manager of Geolog	у	
	1982–1988	Greenvale/Esperance group	Sydney, Australia
	Exploration Manage	er	
	1981–1982	Oil Refining & Exploration PL	Sydney, Australia
	Field geologist		
	1980 – 1981	NSW Coastal Engineers	Sydney, Australia
	Lab attendant		
Education	1986- 1989	University of Wollongong	Australia
	Master of Scien	ce (geology)	
	1978- 1980	University of Sydney	Australia
	Bachelor of Scie	nce (geology and marine s	cience)

Some Articles & Publications	 1987, The Geology of the Alpha Oil Shale Deposit, Fuel,
	Vol.66, Butterworths UK

- 1990, Torbanite Deposits of the World, Thesis: University of Wollongong
- 2000, Coal Geology of the Bengkulu Block, Journal Asian Earth Science, Elsevier Advances in Sedimentology Series, Elsevier Special editions
- 2005, Coal Geology of the Bengkulu Block. Proc. SE Asian Coal Geology Conference, Bandung
- 2012, Coal Deposits of Sumatra, Coal Trans Conference Bali
- 2012, Low Rank Coal Deposits of Indonesia, Coal Trans Conference Bali
- 2013, Tectonic Framework of Sumatra & the Distribution of Coal Deposits, Ozmine Conference, Jakarta
- 2014, Coal Potential of Sumatra, Coal Markets Workshop, Singapore
- 2014 Adding Value Through Optimizing Exploration Techniques, 2nd Asian Nickel Conference
- 2014 Coal Potential of Sumatra, World Coal Magazine volume 23
- 2016 The Exploration Potential of Sumatra, Sumatra Miner Conference, Palembang Sumatra
- 2016 Why Things are Improving in the Indonesian Coal Industry, RTC Kalimantan, Conference Balipapan, Indonesia
- 2019 The Coal and Mineral Potential of Sumatra, Sumatra Miner Conference, Palembang Sumatra

<u>Resume</u>

Name: Date of Birth: Marital Status: Nationality:	Tobias Geoffrey Maya 26 March 1981 Married Australian
Address:	JI. H. Saidi II No. 16 RT.011 RW.07, Cipete Utara, Kebayoran Baru, Jakarta Selatan 12150,
Mobile: Email :	(+62) 0812 3869379 ; tobiasmaya@yahoo.com.au tobias.maya@danmar.asia

Since 2004, Tobias has been working full time in the Indonesian coal and minerals exploration industry specializing in exploration geology, regional mineral studies, due diligence work, database validation and resource development. Tobias has a Bachelor of Science degree from the Charles Sturt University in NSW, Australia. He has also held a membership with the AusIMM since 2009.

Tobias has more than 18 years exploration experience throughout the country. This work includes the exploration and development of numerous nickel laterite projects. providing a key role in the optimization of exploration techniques that can be used to minimize costs & maximize project value, increasing confidence in estimation of Nickel laterite volumes to determine what are the controlling factors for project development within Indonesian deposits.

EDUCATION AND TRAINING

2006-2013	Completed BSc with major in Spatial Science with 2 minors in information technology and management Charles Sturt University, Wagga Wagga, NSW
2013	Certificate for successful completion of Valuation and Technical-Economic Assessment of Mining Projects, SRK Consultacy
2009	Certificate for successful completion of Mining and Minerals optimization course, Whittle Consultacy
1999-2001	Completed Geographic Information Systems (GIS)Diploma Wollongong TAFE
1998	Higher School Certificate; Bulli High School
1996	School Certificate; Bulli High School
1994	St Johns Ambulance First Aid Certificate

MEMBERSHIP OF PROFESSIONAL ORGANIZATIONS

Since 2009 Member of the AusIMM (No.304661)

EMPLOYMENT & WORK EXPERIENCE

2013 – Present	 PT. Geo Search (full-time) part of the Danmar Group President Director. Geophysical surveys Principle Geological consultant to PT Danmar Explorindo 	
2004 – 2013	 PT. Danmar Explorindo (full-time) Head GIS/Resource Geologist (SURPAC). Management Coal and Mineral Exploration, (Drilling, Survey, Resource Estimates). Business development / client relationship manager Mine Reconciliations of Ongoing operations (monthly) Database validation (JORC) Training Personnel in Software (SURPAC, GIS,). Drafting JORC reports under Principle Mr Daniel Madre, MSc (AusIMM member - 100878) 	
Provided above Consultancy services for following projects:		
2018-present	 PT.Hengjaya Mineralindo (HM) - Morowali, Sulawesi. for Nickel Industries Limited (ASX : NIL) -Laterite Nickel Exploration and database validation -Resource Geology assessments -Mine planning and production reconciliations -UltraGPR survey 265km -JORC (2012) compliant reports 2020 & 2022 	
2018-present	PT.Halmahera Sukses Minerals (HSM) - Halmahera, Maluku. -Laterite Nickel Exploration and database validation -Resource Geology assessments -UltraGPR survey 75km	
2018-Present	PT.Sulawesi Cahaya Mineral (SCM) – North Konawe, Sulawesi -Laterite Nickel Exploration and Project support -UltraGPR survey 2,000km	
2020-Present	PT.Iriana Mutiara Mining (IMM) - Sarmi, Papua for Nickel Industries Limited (ASX : NIL) - Laterite Nickel Exploration and database validation -Resource Geology assessments -UltraGPR survey 185km	
2022-Present	PT.Vale Indonesia (PTVI) – Sorowako, Sulawesi -Laterite Nickel Exploration and Project support	

-UltraGPR survey 300km

2020-Present	PT.Abadi Nikel Nusantara (ANN) - Routa, Sulawesi for Nickel Industries Limited (ASX : NIL) - Laterite Nickel Exploration and database validation -Resource Geology assessments -UltraGPR survey 485km
2018-Present	 PT.Kumamba Mining (KM) - Sarmi, Papua, Indonesia -Exploration management and database validation - Geology assessments - Trial UltraGPR survey 30km - Trial Ground Magnetometer survey 30km
2019-2021	PT.Bumi Liputan Teknik (BLT) - Ketapang, West kalimantan -Laterite Bauxite Exploration and project Due diligence -UltraGPR survey 80km
2017-2019	 PT.Sarana Mineralindo Perkasa (SMP) - Morowali, Sulawesi - Laterite Nickel Exploration and database validation -Resource Geology assessments -Mine planning and pit optimization -UltraGPR survey 85km
2017-2018	PT.Ceria Nugraha Indotama (CNI) - Kolaka, Sulawesi -Laterite Nickel Exploration and database validation -UltraGPR survey 175km
2017-2018	PT.Tiga Samudra Perkasa (TPS) - Malili, Sulawesi -Laterite Nickel Exploration and database validation -Resource Geology assessments -UltraGPR survey 75km
2005-2019	PT.Ratu Samban Mining (RSM) - Bengkulu, Sumatra. -Thermal Coal Exploration management and database validation -Resource Geology assessments -Mine planning and production reconciliations -Nedo regional study 2011 -Jogmec regional study 2013 -Bathymetric survey
2009-2018	PT.Gunung Bara Utama (GBU) - Kutai Barat, East Kalimantan. -Thermal Coal Exploration management and database validation -Resource Geology assessments -Pre-JORC study 2010 -JORC (2004) compliant reports 2011 & 2012
2005-2011	PT.Itamatra Nusantara (ITM) - Morowali, Central Sulawesi. -Laterite Nickel Exploration management and database validation -Resource Geology assessments -Bathymetric survey

2004-2010	PT.Telen Indoclay (TIC) Long Ikis Nickel - Pasir, East Kalimantan -Laterite Nickel Exploration management -database validation -Resource Geology assessments -Mine Construction and Production -Mine planning, Grade control and production reconciliations -Bathymetric survey
2010-2016	 PT.Trisula Kencana Sakti (TKS) - Barito Utara, Central Kalimantan for Golden Energy Mines (GEMS) Thermal Coal Exploration management and database validation Resource Geology assessments -JORC (2004) compliant reports 2010 & 2012 -JORC (2012) compliant reports 2013
2010-2018	 PT.Moa Maju Kurina Utama (MMKU) - Bulungan, North Kalimantan -Lignite Exploration management and database validation -Resource Geology assessments -Mine planning -JORC (2004) compliant reports 2010 & 2011 -JORC (2012) compliant reports 2013
2011-2015	PT.Delta Samudra (DS) - Kutai Barat, East Kalimantan -Lignite Exploration management and database validation -Resource Geology assessments -JORC (2004) compliant reports 2013
2012-2018	PT.Berau Usaha Mandiri (BUM) - Berau, East Kalimantan -Lignite database validation -Resource Geology assessments -Mine planning
2010-2015	PT.Inti Putera Kanaan (IPK) - Musi banyuisn, South Sumatra -Lignite Exploration management and database validation -Resource Geology assessments -Mine planning -JORC (2004) compliant report 2012
2006-2014	PT.Mulawarman Putra Abadi Sakti (MPAS) - East Kalimantan -PCI Coal Exploration management and database validation -Resource Geology assessments -JORC (2012) compliant reports 2014
2011-2013	PT.Satria Lestari (SL) - Tenggarong, East Kalimantan -Thermal Coal exploration management and database validation - Resource Geology assessment
2013	Jingella Resources Pty Ltd - Dingo, Queensland, Australia -PCI Coal database validation -Resource Geology assessments

2013	Greenvale Mining Pty Ltd - (Alpha Oil shale) Alpha, Queensland, Australia -Torbanite / Cannel Coal database validation -Resource Geology assessments
2013	PT.Bumi Merapi Energi (BME) - Lahat, South Sumatra -Thermal Coal database validation -Resource Geology assessments -Mine planning -JORC (2004) compliant report 2012
2010-2012	PT.Komunitas Bangun Bersama (KBB) - Samarinda, East Kalimantan -Lignite Resource Geology assessment -JORC (2004) compliant reports 2010 & 2012
2012	PT.Delma Mining Corporation (DMC) - Bulungan, North Kalimantan -Lignite database validation -Resource Geology assessments -JORC (2004) compliant report 2012
2012	PT.Indonesia Pacific Energy (IPE) & PT.Mega Multi Cemerlang (MMC) - Meulaboh, Aceh Barat & Nagan Raya, Aceh -Lignite database validation -Resource Geology assessments -JORC (2004) compliant report 2012
2012	Draig Resources Pty. Ltd - Teeg & Nariin Teeg mining license, ovorhangay Province, Central Mongolia -PCI COAL database validation -Resource Geology assessments -JORC (2004) compliant report 2012
2004-2010	PT.Tunas Inti Abdai (TIA) - Tanah Bumbu, South Kalimantan for ABM investama (ABM) -Thermal Coal Exploration management and database validation -Resource Geology assessments -JORC (2004) compliant reports 2010 & 2011
2010	PT.Bukit Utama Sehjatera (BUS) - Sorong, West Papua -Lignite Exploration management and database validation -Resource Geology assessments
2006-2010	 PT.Mifa Bersaudara (MIFA) & PT.Bara Energy Leastari (BEL) Meulaboh, Aceh Barat & Nagan Raya, Aceh Lignite Exploration management and database validation Resource Geology assessments Mine planning JORC (2004) compliant report 2010

2009	PT.Bakti Pertiwi Nusantara (BPN) – Weda Utara, Central Halmahera, maluku -Laterite Nickel database validation -Resource Geology assessments -JORC (2004) compliant report 2009	
2009	Bildan.Pty.Ltd - Pulau Talud, North sulawesi -Manganese Exploration management	
2008	PT.Berau Bara Energy (BBE) - Berau, East Kalimantan -Thermal Coal database validation -Resource Geology assessments -JORC (2004) compliant report 2008	
2007-2008	PT.Ratu Samban Mining (RSM) - Krui, Lampung. Sumatra. -Iron Sand Exploration management	
2006-2008	PT.Tekno Marina Cipta (TMC) - Kota Bangun, East Kalimantan -Thermal Coal Exploration management and database validation -Resource Geology assessments	
2004-2007	CV. Gudang Hitam Prima (GHP/BBM) - Sanga Sanga Coal Mine, Samarinda, East Kalimantan -Thermal Coal Exploration management and database validation -Resource Geology assessments -Mine planning and production reconciliations	
2006	PT.Borneo Indobara (BIB) - Tanah Bumbu, south kalimantan for SINAR MAS MINING - Project Due diligence study Grimulya Block	
2004-2006	PT. Multi Prima Energy (MPE) - Loa Raya Coal Mine, Tenggarong, East Kalimantan. -Thermal Coal Exploration management and database validation -Resource Geology assessments -Mine planning and production reconciliations	
Previous Employment		
1999- 2004	 Natural Beauty Floor Sanding (full-time) Surface preparation; punch & fill, sanding & edging Applying coating products 	
September 2000	 Hydrographic Sciences Australia (2 weeks work experience) Re-editing Hydrographic charts Hydrographic chart compilation Sounding selection 	

CONFERENCE PAPER PRESENTATIONS

August 2022	"Nickel Laterites – Adding Value by Optimizing Exploration" - Nickel Summit by Indonesia Miner, Jakarta, Indonesia
November 2018	"Indoneisa, Hi-CV coal supply?" - 7 th annual Coaltrans Emerging Asia Markets, Hanoi, Vietnam
May 2018	" Developing efficiency in the Indonesian coal supply chain" - 24 th annual Coaltrans Asia, Bali,
September 2017	" Exploration potential for new Nickel supplies in Indonesia " - Metal Bulletin: 5 th Asian Nickel Conference, Jakarta,
July 2016	" Which Indonesian coal energy projects will attract Korean investors through 2020?" - Korea Coaltrans Asia, Seoul,
March 2015	"The Coal Potential of Sumatra" - Sumatra Miner 2015 conference
September 2014	"Adding value through optimizing exploration techniques" - 2 nd Asian Nickel Conference
December 2012	"Low Rank Coal Deposits of Indonesia" - IHS Mcloskey Asia Pacific Coal Outlook Conference 2012, Bali
June 2012	"The Coal Deposits of Sumatra" - 18th annual Coaltrans Asia, Bali

SOFTWARE EXPERIENCE

- SURPAC Mining software Expert Knowledge of Geodatabase, Surface modelling, Block Modelling, Pit optimisation, Pit design modules.
- WHITTLE Pit optimisation Software good knowledge of Pit optimisation procedure and analysis of results
- ArcGIS 9.3 GIS Software Good knowledge of Spatial interpolation techniquies and map design
- MapINFO, Global mapper and Surfer GIS software
- Microsoft 7-10, VISTA, XP and NT operation systems
- Microsoft office 2003, 2007 & 2010 Word, Excel, Access, Powerpoint
- Adobe acrobat 8 Professional
- AutoCAD 2009

REFERENCES

Daniel Madre (Director) PT.Danmar Explorindo SANUR, BALI Ph. +62 81 23851151 daniel.madre@danmar.asia

YORRIS WIBRIANA

Resource Geologist, Competent Person Indonesia

yorris.wibriana@danmar.asia | +62-8122-1795-84

- PROFILE I am qualified as Competent Person Indonesia (CPI) for public reporting of Coal Exploration and Resource Estimation under KCMI Code with more than 19 years of professional experience in geological exploration and mining development across Indonesia. I have strong knowledge in exploration data validation, geological modelling, geostatistics and Resource estimation for several mining commodities. SKILLS Minescape Stratmodel (5/5) Qgis & Arcgis (4/5) Surpac (3/5) • • Leapfrog Geo(5/5) MySQL and PostgreSQL Database (4/5) **EDUCATION** Bachelor of Geological Engineering, Padjadjaran University Indonesia Graduated 2004
- AWARDS Best Technical Discovery in IAGI Exploration Award 2021
- PT DANMAR EXPLORINDO (2021 current) EXPERIENCE PT DANMAR EXPLORINDO (2021 – current) Resource Estimation, Geological Exploration Manager
 - PT BARAMULTI SUGIH SENTOSA (2020 2021) Senior Geologist, Mining Business Development
 - PT DANMAR EXPLORINDO & PT GEOSEARCH (2015 2020) Resource Estimation, Geological Exploration Manager
 - PT MINESERVE CITRA TEKNIK (2012 2015)
 Coal Resource & Geological Exploration
 - PT CSA GLOBAL (2012) Coal Resource Geologist
 - PT RIDA JAYA MANDIRI (2011 2012) Coal Resource Geologist
 - PT MINESERVE CITRA TEKNIK (2007- 2011) Field & Coal Resource Geologist, Short term mine planning
 - PT KALTIM BATU MANUNGGAL (2006 2007) Coal Pit Geologist
 - PT BUMI MAKMUR SELARAS (2005 2006) Nickel Geologist

GEOLOGICAL MODELING & EXPLORATION REPORT

1. PT Halmahera Sukses Mineral, Halmahera (2023)

Geological modeling and contributor to Nickel Resource Estimation Report (JORC Report)

2. PT Iriana Mutiara Mining (2023)

Geological modeling and contributor to Nickel Resource Estimation Report (JORC Report)

3. PT Ratu Samban Mining (Blok 9), Bengkulu (2023)

Geological modeling and Author of Coal Exploration and Resouce Estimation Report (KCMI Report)

4. PT Komunitas Bangun Bersama, East Kalimantan (2022)

Geological modeling and Author of Coal Exploration and Resource Estimation Report (KCMI Report)

5. PT Petroindo Utama (2021)

PT Multi Tambangjaya Utama (MUTU) Due Diligence of Remaining Coal Resources and Reserves Report (Author)

6. PT Pada Idi, East Kalimantan (2021)

Geological modeling and Author of Coal Exploration and Resource Estimation Report (KCMI Report)

7. PT Chaido Mega Mineral, East Kalimantan (2021)

Author of Preliminary Coal Mapping Report (SNI Report)

8. PT Borneo Indo Bara, South Kalimantan (2021)

Geological model validation and Author of Coal Resource Estimation Report (KCMI Report)

9. PT Dayak Membangun Pratama, Central Kalimantan (2021)

Geological model validation and Author of Coal Resource Estimation Report (KCMI Report)

10. PT Bima Putra Abadi Citranusa, South Sumatera (2021)

Geological model validation and Contributor to Coal Resource Estimation Report (JORC Report)

11. PT Komunitas Bangun Bersama, East Kalimantan (2019)

Geological modeling and Author of Coal Exploration and Resource Estimation Report (KCMI Report)

12. PT Bangun Banua Persada Kalimantan (2019)

Geological modeling and Author of Coal Exploration and Resource Estimation Report of Block Banta & Batu Tungku (KCMI Report)

13. PT Dinasty Maha Karya & PT Bukit Eno Persada, East Kalimantan (2018)

Geological modeling and Author of Due Diligence Study of KPR Coal Project Report

14. PT Kalimantan Energi Lestari, South Kalimantan (2018)

Geological modeling and Author of Coal Exploration and Resource Estimation Report (KCMI Report)

15. PT Gunung Bara Utama, East Kalimantan (2017)

Geological modeling and Author of Coal Resource Estimation Report (KCMI Report)

16. PT Borneo Indo Bara, South Kalimantan (2017)

Geological model validation and Author of Coal Resource Estimation Report (KCMI Report)

17. PT Mantimin Coal Mining, South Kalimantan (2016)

Contributor to PT Mantimin Coal Mining Qualified Person's Report of Coal Resources & Reserves of Coal

18. PT Mantimin Coal Mining, South Kalimantan (2016)

Author of Mantimin Coal Mapping Exploration Report

19. PT Wira Rimba Lestari, South Sumatera (2016)

Geological modeling and contributor to PT Wira Rimba Lestari Coal Resource & Reserve Report (JORC Report)

20. PT Minemex Indonesia, South Sumatera (2015)

Geological modeling and contributor to PT Minemex Indonesia Coal Resource & Reserve Report (JORC Report)

21. PT Bukit Bara Alam, South Sumatera (2013)

Geological modeling and contributor to PT Bukit Bara Alam Coal Resource Report (JORC Report)

22. PT Bara Alam Utama, South Sumatera (2012)

Geological modeling and contributor to PT Bara Alam Utama Coal Resource & Reserve Report (JORC Report)

23. CV Datra Katama Jaya, South Kalimantan (2011)

Geological modeling and Author of Coal Resource & Reserve Report

24. PT Laskar Semesta Alam, South Kalimantan (2011)

Geological modeling and Author of Coal Exploration & Resource Estimation Report

25. PT Rida Jaya Mandiri, West Kalimantan (2011)

Geological modeling and Author of Coal Exploration & Resource Estimation Report

26. CV Prima Mandiri, East Kalimantan (2011)

Geological modeling and contributor to CV Prima Mandiri Coal Resource & Reserve Report (JORC Report)

27. PT Kartika Sela Bumi Mining, East Kalimantan (2011)

Geological modeling and contributor to PT Kartika Sela Bumi Mining Coal Resource & Reserve Report (JORC Report)

28. PT Bara Indah Lestari, Bengkulu (2010)

Geological modeling and Author of Coal Exploration & Resource Estimation Report

29. PT Nusa Kencana Riau, Riau (2010)

Geological modeling and Author of Coal Exploration & Resource Estimation Report

30. PT Inti Bara Perdana, Bengkulu (2008-2010)

Exploration manager, geological modeling, Coal Exploration & Resource Estimation Report, and short term mine planning

31. PT Dian Rana Petrojasa, South Sumatera (2009)

Geological modeling and Author of Coal Exploration & Resource Estimation Report

32. PT Semesta Centramas, South Kalimantan (2007)

Geological modeling and Author of Coal Exploration & Resource Estimation Report

Harman Adhittyo

Resource Geologist

JI. Pengantin Ali II No. 26, Ciracas East Jakarta 13740 DKI Jakarta, Indonesia Tel (M) : +62 813 1951 3181 (Indonesia)

e-mail : harmanadhittyo@gmail.com

Place and date of birth: Jakarta, February 6th 1987Sex: MaleReligion: IslamMarital Status: MarriedNationality: Indonesian

Geologist with 8+ years of experience in epithermal low sulphidation deposit and 5 years of experience in modelling and resource estimating nickel laterite deposit. Expertise from exploration to mining. Core competencies include:

Exploration Mapping and Sampling • Core and RC Logging • Grade Control Mapping and Sampling • Wireframing • Block Modeling • Resource Estimation • Database

Professional Experience

PT Danmar Explorindo

Resource Geologist, January 2019 – Present, South Jakarta, DKI Jakarta

Primary Duties Include:

- Responsible for quality control of database
- Responsible for updating database
- Responsible for updating wireframe, composite data, statistics and domaining
- Responsible for updating resource estimation

Sumatra Copper and Gold, Plc.

Mine Geologist, September 2017 – August 2018, Tembang, South Sumatra

Primary Duties Include:

- Responsible for quality control of database
- Responsible for updating wireframe, composite data, data statistics and domaining
- Responsible for updating open pit block model using GCX module in Surpac software
- Responsible for updating underground block model manually in Surpac software
- Responsible for monthly reconciliation report
- Responsible for grade control mapping and sampling (face, floor, wall) in underground
- Responsible for production data (tonnes production, ore to crusher, ore stock)

Harman Adhittyo

Resource Geologist

JI. Pengantin Ali II No. 26, Ciracas East Jakarta 13740 DKI Jakarta, Indonesia Tel (M) : +62 813 1951 3181 (Indonesia)

e-mail : harmanadhittyo@gmail.com

Junior Resource Mine Geologist, January 2016 – September 2017, Tembang, South Sumatra Primary Duties Include:

- Responsible for quality control of database
- Responsible for updating wireframe, composite data, data statistics and domaining
- Responsible for updating open pit block model using GCX module in Surpac software
- Responsible for updating underground block model manually in Surpac software
- Responsible for monthly reconciliation report
- Responsible for grade control mapping and sampling (trench, blast hole, RC drill, channel) in open pit
- Responsible for grade control mapping and sampling (face, floor, wall) in underground
- Responsible for logging both RC drilling and blast hole drilling
- Responsible for density and moisture sampling project

Junior Mine Geologist, June 2015 – January 2016, Tembang, South Sumatra

Primary Duties Include:

- Responsible for grade control mapping, sampling and geology interpretation
- Responsible for logging both RC drilling and blast hole drilling
- Responsible for plotting data to map
- Responsible for density and moisture sampling project
- Responsible for monthly report to Senior Geologist

Junior Exploration Geologist, July 2012 – June 2015, Lebong Tandai, Bengkulu

Primary Duties Include:

- Responsible for mapping, sampling and geology interpretation
- Responsible for quick logging and detail logging diamond drill
- Responsible for plotting data to map
- Responsible for monthly report to Project Geologist and Senior Geologist
- Supervised activities for fly camp

Junior Exploration Geologist, June 2010 – July 2012, Pasaman, West Sumatra

Primary Duties Include:

- Responsible for mapping, sampling and geology interpretation
- Responsible for quick logging and detail logging diamond drill
- Responsible for plotting data to map
- Responsible for monthly report to Project Geologist and Senior Geologist

Graduate Geologist, April 2010 - June 2010

Harman Adhittyo

Resource Geologist

Jl. Pengantin Ali II No. 26, Ciracas East Jakarta 13740 DKI Jakarta, Indonesia Tel (M) : +62 813 1951 3181 (Indonesia)

e-mail : <u>harmanadhittyo@gmail.com</u>

Formal Education

Bachelor of Geological Engineering, Bandung Institute of Technology, Indonesia, 2010

Languages

English : Enough Bahasa Indonesia : Fluent

Computer Software Literacy

MapInfo • ArcGis • QGIS • GlobalMapper • Microsoft Office Applications • Surpac • Micromine • Minescape • Leapfrog